000826047 001__ 826047
000826047 005__ 20210129225516.0
000826047 0247_ $$2doi$$a10.3390/polym9010015
000826047 0247_ $$2Handle$$a2128/13419
000826047 0247_ $$2WOS$$aWOS:000396471000013
000826047 0247_ $$2altmetric$$aaltmetric:15241280
000826047 037__ $$aFZJ-2017-00316
000826047 082__ $$a540
000826047 1001_ $$0P:(DE-Juel1)136926$$aKobayashi, Hideki$$b0
000826047 245__ $$aPolymer conformations in ionic microgels in the presence of salt: Theoretical and mesoscale simulation results
000826047 260__ $$aBasel$$bMDPI$$c2017
000826047 3367_ $$2DRIVER$$aarticle
000826047 3367_ $$2DataCite$$aOutput Types/Journal article
000826047 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1485241056_15327
000826047 3367_ $$2BibTeX$$aARTICLE
000826047 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826047 3367_ $$00$$2EndNote$$aJournal Article
000826047 520__ $$aWe investigate the conformational properties of polymers in ionic microgels in the presence of salt ions by molecular dynamics simulations and analytical theory. A microgel particle consists of coarse-grained linear polymers, which are tetra-functionally crosslinked. Counterions and salt ions are taken into account explicitly, and charge-charge interactions are described by the Coulomb potential. By varying the charge interaction strength and salt concentration, we characterize the swelling of the polyelectrolytes and the charge distribution. In particular, we determine the amount of trapped mobile charges inside the microgel and the Debye screening length. Moreover, we analyze the polymer extension theoretically in terms of the tension blob model taking into account counterions and salt ions implicitly by the Debye–Hückel model. Our studies reveal a strong dependence of the amount of ions absorbed in the interior of the microgel on the electrostatic interaction strength, which is related to the degree of the gel swelling. This implies a dependence of the inverse Debye screening length κ on the ion concentration; we find a power-law increase of κ with the Coulomb interaction strength with the exponent 3/5 for a salt-free microgel and an exponent 1/2 for moderate salt concentrations. Additionally, the radial dependence of polymer conformations and ion distributions is addressed
000826047 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000826047 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000826047 588__ $$aDataset connected to CrossRef
000826047 7001_ $$0P:(DE-Juel1)132124$$aHalver, Rene$$b1
000826047 7001_ $$0P:(DE-Juel1)132274$$aSutmann, Godehard$$b2
000826047 7001_ $$0P:(DE-Juel1)131039$$aWinkler, Roland G.$$b3$$eCorresponding author
000826047 773__ $$0PERI:(DE-600)2527146-5$$a10.3390/polym9010015$$gVol. 9, no. 1, p. 15 -$$n1$$p15$$tPolymers$$v9$$x2073-4360$$y2017
000826047 8564_ $$uhttps://juser.fz-juelich.de/record/826047/files/polymers-09-00015.pdf$$yOpenAccess
000826047 8564_ $$uhttps://juser.fz-juelich.de/record/826047/files/polymers-09-00015.gif?subformat=icon$$xicon$$yOpenAccess
000826047 8564_ $$uhttps://juser.fz-juelich.de/record/826047/files/polymers-09-00015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000826047 8564_ $$uhttps://juser.fz-juelich.de/record/826047/files/polymers-09-00015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000826047 8564_ $$uhttps://juser.fz-juelich.de/record/826047/files/polymers-09-00015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000826047 8564_ $$uhttps://juser.fz-juelich.de/record/826047/files/polymers-09-00015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000826047 909CO $$ooai:juser.fz-juelich.de:826047$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000826047 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132124$$aForschungszentrum Jülich$$b1$$kFZJ
000826047 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132274$$aForschungszentrum Jülich$$b2$$kFZJ
000826047 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131039$$aForschungszentrum Jülich$$b3$$kFZJ
000826047 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000826047 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000826047 9141_ $$y2017
000826047 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826047 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000826047 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826047 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPOLYMERS-BASEL : 2015
000826047 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000826047 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000826047 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826047 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826047 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000826047 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000826047 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826047 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826047 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826047 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826047 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000826047 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000826047 980__ $$ajournal
000826047 980__ $$aVDB
000826047 980__ $$aI:(DE-Juel1)IAS-2-20090406
000826047 980__ $$aI:(DE-Juel1)JSC-20090406
000826047 980__ $$aUNRESTRICTED
000826047 9801_ $$aFullTexts