000826048 001__ 826048
000826048 005__ 20210129225516.0
000826048 0247_ $$2doi$$a10.1063/1.4972893
000826048 0247_ $$2ISSN$$a0021-9606
000826048 0247_ $$2ISSN$$a1089-7690
000826048 0247_ $$2WOS$$aWOS:000392174800050
000826048 0247_ $$2Handle$$a2128/18966
000826048 037__ $$aFZJ-2017-00317
000826048 082__ $$a540
000826048 1001_ $$0P:(DE-Juel1)164360$$aGhavami, Ali$$b0
000826048 245__ $$aInternal dynamics of microgels: A mesoscale hydrodynamic simulation study
000826048 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2016
000826048 3367_ $$2DRIVER$$aarticle
000826048 3367_ $$2DataCite$$aOutput Types/Journal article
000826048 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484137697_30591
000826048 3367_ $$2BibTeX$$aARTICLE
000826048 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826048 3367_ $$00$$2EndNote$$aJournal Article
000826048 520__ $$aWe analyze the dynamics of polymers in a microgel system under different swelling conditions. A microgel particle consists of coarse-grained linear polymers which are tetra-functionally crosslinked and undergoes conformational changes in response to the external stimuli. Here, a broad range of microgel sizes, extending from tightly collapsed to strongly swollen particles, is considered. In order to account for hydrodynamic interactions, the microgel is embedded in a multiparticle collision dynamics fluid while hydrophobic attraction is modelled by an attractive Lennard-Jones potential and swelling of ionic microgels is described through the Debye-Hückel potential. The polymer dynamics is analyzed in terms of the monomer mean square displacement and the intermediate scattering function S(q, t). The scattering function decays in a stretched-exponential manner, with a decay rate exhibiting a crossover from a collective diffusive dynamics at low magnitudes of the wavevector q to a hydrodynamic-dominated dynamics at larger q. There is little difference between the intermediate scattering functions of microgels under good solvent conditions and strongly swollen gels, but strongly collapsed gels exhibit a faster decay at short times and hydrodynamic interactions become screened. In addition, we present results for the dynamics of the crosslinks, which exhibit an unexpected, semiflexible polymer-like dynamics.I. INTRODUCTION
000826048 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000826048 588__ $$aDataset connected to CrossRef
000826048 7001_ $$0P:(DE-Juel1)136926$$aKobayashi, Hideki$$b1
000826048 7001_ $$0P:(DE-Juel1)131039$$aWinkler, Roland G.$$b2$$ufzj
000826048 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.4972893$$gVol. 145, no. 24, p. 244902 -$$n24$$p244902$$tThe journal of chemical physics$$v145$$x1089-7690$$y2016
000826048 8564_ $$uhttps://juser.fz-juelich.de/record/826048/files/1.4972893.pdf$$yOpenAccess
000826048 8564_ $$uhttps://juser.fz-juelich.de/record/826048/files/1.4972893.gif?subformat=icon$$xicon$$yOpenAccess
000826048 8564_ $$uhttps://juser.fz-juelich.de/record/826048/files/1.4972893.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000826048 8564_ $$uhttps://juser.fz-juelich.de/record/826048/files/1.4972893.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000826048 909CO $$ooai:juser.fz-juelich.de:826048$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000826048 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131039$$aForschungszentrum Jülich$$b2$$kFZJ
000826048 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000826048 9141_ $$y2016
000826048 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826048 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826048 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2015
000826048 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826048 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826048 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826048 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000826048 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000826048 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826048 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826048 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000826048 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000826048 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826048 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000826048 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826048 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000826048 980__ $$ajournal
000826048 980__ $$aVDB
000826048 980__ $$aUNRESTRICTED
000826048 980__ $$aI:(DE-Juel1)IAS-2-20090406
000826048 9801_ $$aFullTexts