000826054 001__ 826054
000826054 005__ 20210129225518.0
000826054 0247_ $$2doi$$a10.1021/acs.jpclett.6b02517
000826054 0247_ $$2Handle$$a2128/13423
000826054 0247_ $$2WOS$$aWOS:000391653200032
000826054 0247_ $$2altmetric$$aaltmetric:14863966
000826054 0247_ $$2pmid$$apmid:27935313
000826054 037__ $$aFZJ-2017-00323
000826054 041__ $$aEnglish
000826054 082__ $$a530
000826054 1001_ $$0P:(DE-HGF)0$$aPuschnig, P.$$b0$$eCorresponding author
000826054 245__ $$aEnergy Ordering of Molecular Orbitals
000826054 260__ $$aWashington, DC$$bACS$$c2016
000826054 3367_ $$2DRIVER$$aarticle
000826054 3367_ $$2DataCite$$aOutput Types/Journal article
000826054 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484205024_29822
000826054 3367_ $$2BibTeX$$aARTICLE
000826054 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826054 3367_ $$00$$2EndNote$$aJournal Article
000826054 520__ $$aOrbitals are invaluable in providing a model of bonding in molecules or between molecules and surfaces. Most present-day methods in computational chemistry begin by calculating the molecular orbitals of the system. To what extent have these mathematical objects analogues in the real world? To shed light on this intriguing question, we employ a photoemission tomography study on monolayers of 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) grown on three Ag surfaces. The characteristic photoelectron angular distribution enables us to assign individual molecular orbitals to the emission features. When comparing the resulting energy positions to density functional calculations, we observe deviations in the energy ordering. By performing complete active space calculations (CASSCF), we can explain the experimentally observed orbital ordering, suggesting the importance of static electron correlation beyond a (semi)local approximation. On the other hand, our results also show reality and robustness of the orbital concept, thereby making molecular orbitals accessible to experimental observations.
000826054 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000826054 588__ $$aDataset connected to CrossRef
000826054 7001_ $$0P:(DE-HGF)0$$aBoese, A. D.$$b1
000826054 7001_ $$0P:(DE-Juel1)142384$$aWillenbockel, M.$$b2
000826054 7001_ $$0P:(DE-HGF)0$$aMeyer, M.$$b3
000826054 7001_ $$0P:(DE-HGF)0$$aLüftner, D.$$b4
000826054 7001_ $$0P:(DE-HGF)0$$aReinisch, E. M.$$b5
000826054 7001_ $$0P:(DE-HGF)0$$aUles, T.$$b6
000826054 7001_ $$0P:(DE-HGF)0$$aKoller, G.$$b7
000826054 7001_ $$0P:(DE-HGF)0$$aSoubatch, S.$$b8
000826054 7001_ $$0P:(DE-HGF)0$$aRamsey, M. G.$$b9
000826054 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. S.$$b10$$ufzj
000826054 773__ $$0PERI:(DE-600)2522838-9$$a10.1021/acs.jpclett.6b02517$$gVol. 8, no. 1, p. 208 - 213$$n1$$p208 - 213$$tThe @journal of physical chemistry letters$$v8$$x1948-7185$$y2016
000826054 8564_ $$uhttps://juser.fz-juelich.de/record/826054/files/acs.jpclett.6b02517.pdf$$yOpenAccess
000826054 8564_ $$uhttps://juser.fz-juelich.de/record/826054/files/acs.jpclett.6b02517.gif?subformat=icon$$xicon$$yOpenAccess
000826054 8564_ $$uhttps://juser.fz-juelich.de/record/826054/files/acs.jpclett.6b02517.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000826054 8564_ $$uhttps://juser.fz-juelich.de/record/826054/files/acs.jpclett.6b02517.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000826054 8564_ $$uhttps://juser.fz-juelich.de/record/826054/files/acs.jpclett.6b02517.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000826054 8564_ $$uhttps://juser.fz-juelich.de/record/826054/files/acs.jpclett.6b02517.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000826054 909CO $$ooai:juser.fz-juelich.de:826054$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000826054 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826054 915__ $$0LIC:(DE-HGF)PublisherOA$$2HGFVOC$$aFree to read
000826054 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM LETT : 2015
000826054 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ PHYS CHEM LETT : 2015
000826054 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826054 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826054 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826054 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000826054 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826054 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000826054 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826054 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826054 9141_ $$y2016
000826054 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b10$$kFZJ
000826054 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000826054 920__ $$lyes
000826054 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000826054 980__ $$ajournal
000826054 980__ $$aVDB
000826054 980__ $$aUNRESTRICTED
000826054 980__ $$aI:(DE-Juel1)PGI-3-20110106
000826054 9801_ $$aFullTexts