001     826054
005     20210129225518.0
024 7 _ |a 10.1021/acs.jpclett.6b02517
|2 doi
024 7 _ |a 2128/13423
|2 Handle
024 7 _ |a WOS:000391653200032
|2 WOS
024 7 _ |a altmetric:14863966
|2 altmetric
024 7 _ |a pmid:27935313
|2 pmid
037 _ _ |a FZJ-2017-00323
041 _ _ |a English
082 _ _ |a 530
100 1 _ |0 P:(DE-HGF)0
|a Puschnig, P.
|b 0
|e Corresponding author
245 _ _ |a Energy Ordering of Molecular Orbitals
260 _ _ |a Washington, DC
|b ACS
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1484205024_29822
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Orbitals are invaluable in providing a model of bonding in molecules or between molecules and surfaces. Most present-day methods in computational chemistry begin by calculating the molecular orbitals of the system. To what extent have these mathematical objects analogues in the real world? To shed light on this intriguing question, we employ a photoemission tomography study on monolayers of 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) grown on three Ag surfaces. The characteristic photoelectron angular distribution enables us to assign individual molecular orbitals to the emission features. When comparing the resulting energy positions to density functional calculations, we observe deviations in the energy ordering. By performing complete active space calculations (CASSCF), we can explain the experimentally observed orbital ordering, suggesting the importance of static electron correlation beyond a (semi)local approximation. On the other hand, our results also show reality and robustness of the orbital concept, thereby making molecular orbitals accessible to experimental observations.
536 _ _ |0 G:(DE-HGF)POF3-142
|a 142 - Controlling Spin-Based Phenomena (POF3-142)
|c POF3-142
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Boese, A. D.
|b 1
700 1 _ |0 P:(DE-Juel1)142384
|a Willenbockel, M.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Meyer, M.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Lüftner, D.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Reinisch, E. M.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Ules, T.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Koller, G.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Soubatch, S.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Ramsey, M. G.
|b 9
700 1 _ |0 P:(DE-Juel1)128791
|a Tautz, F. S.
|b 10
|u fzj
773 _ _ |0 PERI:(DE-600)2522838-9
|a 10.1021/acs.jpclett.6b02517
|g Vol. 8, no. 1, p. 208 - 213
|n 1
|p 208 - 213
|t The @journal of physical chemistry letters
|v 8
|x 1948-7185
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/826054/files/acs.jpclett.6b02517.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826054/files/acs.jpclett.6b02517.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826054/files/acs.jpclett.6b02517.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826054/files/acs.jpclett.6b02517.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826054/files/acs.jpclett.6b02517.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826054/files/acs.jpclett.6b02517.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:826054
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128791
|a Forschungszentrum Jülich
|b 10
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-142
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 LIC:(DE-HGF)PublisherOA
|2 HGFVOC
|a Free to read
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J PHYS CHEM LETT : 2015
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b J PHYS CHEM LETT : 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Funktionale Nanostrukturen an Oberflächen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21