000826068 001__ 826068
000826068 005__ 20230426083141.0
000826068 0247_ $$2doi$$a10.1103/PhysRevB.93.235429
000826068 0247_ $$2ISSN$$a0163-1829
000826068 0247_ $$2ISSN$$a0556-2805
000826068 0247_ $$2ISSN$$a1094-1622
000826068 0247_ $$2ISSN$$a1095-3795
000826068 0247_ $$2ISSN$$a1098-0121
000826068 0247_ $$2ISSN$$a1550-235X
000826068 0247_ $$2ISSN$$a2469-9950
000826068 0247_ $$2ISSN$$a2469-9969
000826068 0247_ $$2Handle$$a2128/13425
000826068 0247_ $$2WOS$$aWOS:000378050600006
000826068 037__ $$aFZJ-2017-00328
000826068 041__ $$aEnglish
000826068 082__ $$a530
000826068 1001_ $$0P:(DE-HGF)0$$aBauer, O.$$b0
000826068 245__ $$aAu enrichment and vertical relaxation of the Cu$_{3}$ Au ( 111 ) surface studied by normal-incidence x-ray standing waves
000826068 260__ $$aWoodbury, NY$$bInst.$$c2016
000826068 3367_ $$2DRIVER$$aarticle
000826068 3367_ $$2DataCite$$aOutput Types/Journal article
000826068 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484212481_29818
000826068 3367_ $$2BibTeX$$aARTICLE
000826068 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826068 3367_ $$00$$2EndNote$$aJournal Article
000826068 520__ $$aWe have investigated the Cu3Au(111) surface, prepared under ultrahigh vacuum conditions by sputtering and annealing, by low energy electron diffraction (LEED), scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy, and normal incidence x-ray standing waves (NIXSW). We find the surface to be depleted with Cu and enriched with Au at the same time, yielding a nominal Cu:Au ratio of 0.61:0.39 in the topmost layer. The STM images reveal that the first layer is nearly closely filled with atoms and contains a small amount of vacancies with an area concentration of about 5%. Together with the Au enrichment, these cause local short-range disorder of the Au p(2×2) reconstruction. From this data, the average stoichiometry of the p(2×2) surface unit cell is estimated at Cu2.22Au1.44□0.20 (instead of Cu3.00Au1.00□0.00 of the ideal surface; □ denotes an atomic vacancy site). From NIXSW we find a significant outward relaxation of both the Cu and Au atoms of the topmost layer by 0.28 Å and 0.33 Å, which corresponds to 13% and 15% of the (111) bulk layer spacing of Cu3Au. We suggest that this originates from a widening of the first/second layer spacing, by 6.8% and 8.8% for the Cu and Au atoms, respectively, plus an additional rigid increase in the second/third layer spacing by 6.2%. We explain this by steric repulsions between Au atoms of the topmost layer, replacing smaller Cu atoms, and Au atoms in the second layer in combination with disorder. Finally, a lateral reconstruction, similar to that on the Au(111) surface, but with a much larger periodicity of 290 Å, is identified from LEED.
000826068 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000826068 542__ $$2Crossref$$i2016-06-16$$uhttp://link.aps.org/licenses/aps-default-license
000826068 588__ $$aDataset connected to CrossRef
000826068 7001_ $$0P:(DE-HGF)0$$aSchmitz, C. H.$$b1
000826068 7001_ $$0P:(DE-HGF)0$$aIkonomov, J.$$b2
000826068 7001_ $$0P:(DE-Juel1)142384$$aWillenbockel, M.$$b3
000826068 7001_ $$0P:(DE-HGF)0$$aSoubatch, S.$$b4
000826068 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. S.$$b5$$ufzj
000826068 7001_ $$0P:(DE-HGF)0$$aSokolowski, M.$$b6$$eCorresponding author
000826068 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.93.235429$$bAmerican Physical Society (APS)$$d2016-06-16$$n23$$p235429$$tPhysical Review B$$v93$$x2469-9950$$y2016
000826068 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.93.235429$$gVol. 93, no. 23, p. 235429$$n23$$p235429$$tPhysical review / B$$v93$$x2469-9950$$y2016
000826068 8564_ $$uhttps://juser.fz-juelich.de/record/826068/files/PhysRevB.93.235429.pdf$$yOpenAccess
000826068 8564_ $$uhttps://juser.fz-juelich.de/record/826068/files/PhysRevB.93.235429.gif?subformat=icon$$xicon$$yOpenAccess
000826068 8564_ $$uhttps://juser.fz-juelich.de/record/826068/files/PhysRevB.93.235429.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000826068 8564_ $$uhttps://juser.fz-juelich.de/record/826068/files/PhysRevB.93.235429.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000826068 8564_ $$uhttps://juser.fz-juelich.de/record/826068/files/PhysRevB.93.235429.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000826068 8564_ $$uhttps://juser.fz-juelich.de/record/826068/files/PhysRevB.93.235429.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000826068 909CO $$ooai:juser.fz-juelich.de:826068$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000826068 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826068 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826068 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000826068 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2015
000826068 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826068 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826068 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826068 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000826068 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000826068 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826068 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826068 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826068 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826068 9141_ $$y2016
000826068 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b5$$kFZJ
000826068 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000826068 920__ $$lyes
000826068 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000826068 980__ $$ajournal
000826068 980__ $$aVDB
000826068 980__ $$aUNRESTRICTED
000826068 980__ $$aI:(DE-Juel1)PGI-3-20110106
000826068 9801_ $$aFullTexts
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3727/30/22/002
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1819552
000826068 999C5 $$1G. C. Shaw$$2Crossref$$oG. C. Shaw Proceedings of the Seventh International Vacuum Congress and the Third International Conference on Solid Surfaces of the International Union for Vacuum Science, Technique and Applications 1977$$tProceedings of the Seventh International Vacuum Congress and the Third International Conference on Solid Surfaces of the International Union for Vacuum Science, Technique and Applications$$y1977
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0304-3991(94)00167-L
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1116/1.4745891
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/68/4/R01
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02893155
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1116/1.568637
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1524/zkri.1999.214.11.684
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.045421
000826068 999C5 $$1R. W. G. Wykoff$$2Crossref$$oR. W. G. Wykoff The Structure of Crystals 1931$$tThe Structure of Crystals$$y1931
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.43.13172
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2005.05.024
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2005.05.025
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/sia.740171304
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.49.7716
000826068 999C5 $$1M. A. V. Hove$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-642-82721-1$$y1986
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.42.9307
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.susc.2007.09.029
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1524/zkri.2000.215.7.429
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.susc.2012.07.016
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.susc.2006.03.049
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0039-6028(95)00623-0
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.48.18119
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.235431
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.39.7988
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nn901345s
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.71.165404
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.43.4667
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0039-6028(96)01330-1
000826068 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/ja01103a004