000826074 001__ 826074
000826074 005__ 20220930130114.0
000826074 0247_ $$2doi$$a10.1088/1367-2630/18/11/113022
000826074 0247_ $$2WOS$$aWOS:000388515200005
000826074 0247_ $$2Handle$$a2128/13926
000826074 0247_ $$2altmetric$$aaltmetric:13481540
000826074 037__ $$aFZJ-2017-00334
000826074 041__ $$aEnglish
000826074 082__ $$a530
000826074 1001_ $$0P:(DE-HGF)0$$aKröger, Ingo$$b0
000826074 245__ $$aSubmonolayer and multilayer growth of titaniumoxide-phthalocyanine on Ag(111)
000826074 260__ $$a[Bad Honnef]$$bDt. Physikalische Ges.$$c2016
000826074 3367_ $$2DRIVER$$aarticle
000826074 3367_ $$2DataCite$$aOutput Types/Journal article
000826074 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484215824_29820
000826074 3367_ $$2BibTeX$$aARTICLE
000826074 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826074 3367_ $$00$$2EndNote$$aJournal Article
000826074 520__ $$aFor exploiting the full potential of organic materials for future organic electronic devices it is of crucial importance to understand structural and electronic properties of metal-organic interfaces and adsorbate systems, in particular electronic interactions and growth mechanisms. Phthalocyanine molecules represent one class of materials which are very frequently discussed in this context. They feature an appealing tunability in terms of structural, electronic and magnetic properties, simply by exchanging the central (metal) atom or group of atoms. Here we present a comprehensive study of one of the model systems in this field, TiOPc on Ag(111). We discuss structure formation and growth from submonolayer to multilayer films, based on results obtained by electron diffraction, scanning tunneling microscopy, electron energy loss spectroscopy, x-ray standing waves, photoelectron spectroscopy and pair potential calculations. Similar to related metal-phthalocyanine adsorbate systems we find three distinct phases in the submonolayer regime, a disordered gas-like 'g-phase', a commensurate 'c2-phase' at low temperature, and a 'p.o.l.-phase' consisting of a series of point-on-line structures with continuously shrinking unit cells. For the latter a uniform TiO-up configuration (Ti–O group pointing towards vacuum) was found. Hence, the first-layer molecules form a strong dipole layer, the dipole moment of which is compensated by molecules adsorbing in the second layer at hollow-sites in TiO-down geometry (Ti-O group pointing towards the surface). The Coulomb interaction between the dipole moments in the first and second layer stabilizes this bilayer structure and causes a bilayer-by-bilayer growth mode of molecular films above a thickness of 2 ML. We report the structural properties (vertical adsorption heights, inter-layer distances, inplane orientations and positions) of the molecules in all phases in detail, and discuss the effect of inelastic dynamical charge transfer. Our results contribute to a comprehensive understanding of this interesting adsorbate system and, in comparison with earlier studies on CuPc, H2Pc and SnPc on Ag(111), we shine new light on the interesting interplay of molecule-molecule and molecule-substrate interactions.
000826074 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000826074 588__ $$aDataset connected to CrossRef
000826074 7001_ $$0P:(DE-Juel1)139025$$aStadtmüller, Benjamin$$b1
000826074 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b2$$eCorresponding author$$ufzj
000826074 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/18/11/113022$$gVol. 18, no. 11, p. 113022 -$$n11$$p113022-1 - 113022-20$$tNew journal of physics$$v18$$x1367-2630$$y2016
000826074 8564_ $$uhttps://juser.fz-juelich.de/record/826074/files/Kr%C3%B6ger_2016_New_J._Phys._18_113022.pdf$$yOpenAccess
000826074 8564_ $$uhttps://juser.fz-juelich.de/record/826074/files/Kr%C3%B6ger_2016_New_J._Phys._18_113022.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000826074 8767_ $$92016-11-10$$d2016-11-11$$eAPC$$jZahlung erfolgt$$paa47d5
000826074 909CO $$ooai:juser.fz-juelich.de:826074$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000826074 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000826074 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826074 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826074 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW J PHYS : 2015
000826074 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000826074 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000826074 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826074 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826074 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826074 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000826074 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000826074 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826074 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826074 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826074 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000826074 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826074 9141_ $$y2016
000826074 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b2$$kFZJ
000826074 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000826074 920__ $$lyes
000826074 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000826074 980__ $$ajournal
000826074 980__ $$aVDB
000826074 980__ $$aUNRESTRICTED
000826074 980__ $$aI:(DE-Juel1)PGI-3-20110106
000826074 9801_ $$aFullTexts
000826074 980__ $$aAPC