000826086 001__ 826086
000826086 005__ 20240711085630.0
000826086 0247_ $$2doi$$a10.1007/s11666-016-0479-4
000826086 0247_ $$2ISSN$$a1059-9630
000826086 0247_ $$2ISSN$$a1544-1016
000826086 0247_ $$2WOS$$aWOS:000392060300011
000826086 037__ $$aFZJ-2017-00346
000826086 082__ $$a670
000826086 1001_ $$0P:(DE-Juel1)169700$$aMahade, Satyapal$$b0$$eCorresponding author
000826086 245__ $$aErosion Performance of Gadolinium Zirconate-Based Thermal Barrier Coatings Processed by Suspension Plasma Spray
000826086 260__ $$aBoston, Mass.$$bSpringer$$c2017
000826086 3367_ $$2DRIVER$$aarticle
000826086 3367_ $$2DataCite$$aOutput Types/Journal article
000826086 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484489035_25226
000826086 3367_ $$2BibTeX$$aARTICLE
000826086 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826086 3367_ $$00$$2EndNote$$aJournal Article
000826086 520__ $$a7-8 wt.% Yttria-stabilized zirconia (YSZ) is the standard thermal barrier coating (TBC) material used by the gas turbines industry due to its excellent thermal and thermo-mechanical properties up to 1200 °C. The need for improvement in gas turbine efficiency has led to an increase in the turbine inlet gas temperature. However, above 1200 °C, YSZ has issues such as poor sintering resistance, poor phase stability and susceptibility to calcium magnesium alumino silicates (CMAS) degradation. Gadolinium zirconate (GZ) is considered as one of the promising top coat candidates for TBC applications at high temperatures (>1200 °C) due to its low thermal conductivity, good sintering resistance and CMAS attack resistance. Single-layer 8YSZ, double-layer GZ/YSZ and triple-layer GZdense/GZ/YSZ TBCs were deposited by suspension plasma spray (SPS) process. Microstructural analysis was carried out by scanning electron microscopy (SEM). A columnar microstructure was observed in the single-, double- and triple-layer TBCs. Phase analysis of the as-sprayed TBCs was carried out using XRD (x-ray diffraction) where a tetragonal prime phase of zirconia in the single-layer YSZ TBC and a cubic defect fluorite phase of GZ in the double and triple-layer TBCs was observed. Porosity measurements of the as-sprayed TBCs were made by water intrusion method and image analysis method. The as-sprayed GZ-based multi-layered TBCs were subjected to erosion test at room temperature, and their erosion resistance was compared with single-layer 8YSZ. It was shown that the erosion resistance of 8YSZ single-layer TBC was higher than GZ-based multi-layered TBCs. Among the multi-layered TBCs, triple-layer TBC was slightly better than double layer in terms of erosion resistance. The eroded TBCs were cold-mounted and analyzed by SEM.
000826086 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000826086 588__ $$aDataset connected to CrossRef
000826086 7001_ $$0P:(DE-HGF)0$$aCurry, Nicholas$$b1
000826086 7001_ $$0P:(DE-HGF)0$$aBjörklund, Stefan$$b2
000826086 7001_ $$0P:(DE-HGF)0$$aMarkocsan, Nicolaie$$b3
000826086 7001_ $$0P:(DE-HGF)0$$aNylén, Per$$b4
000826086 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b5$$ufzj
000826086 773__ $$0PERI:(DE-600)2047715-6$$a10.1007/s11666-016-0479-4$$gVol. 26, no. 1-2, p. 108 - 115$$n1-2$$p108 - 115$$tJournal of thermal spray technology$$v26$$x1544-1016$$y2017
000826086 8564_ $$uhttps://juser.fz-juelich.de/record/826086/files/art_10.1007_s11666-016-0479-4.pdf$$yRestricted
000826086 8564_ $$uhttps://juser.fz-juelich.de/record/826086/files/art_10.1007_s11666-016-0479-4.gif?subformat=icon$$xicon$$yRestricted
000826086 8564_ $$uhttps://juser.fz-juelich.de/record/826086/files/art_10.1007_s11666-016-0479-4.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000826086 8564_ $$uhttps://juser.fz-juelich.de/record/826086/files/art_10.1007_s11666-016-0479-4.jpg?subformat=icon-180$$xicon-180$$yRestricted
000826086 8564_ $$uhttps://juser.fz-juelich.de/record/826086/files/art_10.1007_s11666-016-0479-4.jpg?subformat=icon-640$$xicon-640$$yRestricted
000826086 8564_ $$uhttps://juser.fz-juelich.de/record/826086/files/art_10.1007_s11666-016-0479-4.pdf?subformat=pdfa$$xpdfa$$yRestricted
000826086 909CO $$ooai:juser.fz-juelich.de:826086$$pVDB
000826086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b5$$kFZJ
000826086 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000826086 9141_ $$y2017
000826086 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000826086 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ THERM SPRAY TECHN : 2015
000826086 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826086 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826086 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826086 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826086 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826086 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826086 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826086 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000826086 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000826086 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000826086 980__ $$ajournal
000826086 980__ $$aVDB
000826086 980__ $$aI:(DE-Juel1)IEK-1-20101013
000826086 980__ $$aUNRESTRICTED
000826086 981__ $$aI:(DE-Juel1)IMD-2-20101013