000826116 001__ 826116
000826116 005__ 20240619083533.0
000826116 037__ $$aFZJ-2017-00376
000826116 041__ $$aEnglish
000826116 1001_ $$0P:(DE-Juel1)130797$$aLettinga, M.P.$$b0$$eCorresponding author$$ufzj
000826116 1112_ $$aThe XVIIth International Congress on Rheology$$cKyoto$$d2016-08-08 - 2016-08-13$$wJapan
000826116 245__ $$aAnomalous response of nematic platelets under LAOStress and Strain revealed by 3D Rheo-SAXS
000826116 260__ $$c2016
000826116 3367_ $$033$$2EndNote$$aConference Paper
000826116 3367_ $$2DataCite$$aOther
000826116 3367_ $$2BibTeX$$aINPROCEEDINGS
000826116 3367_ $$2DRIVER$$aconferenceObject
000826116 3367_ $$2ORCID$$aLECTURE_SPEECH
000826116 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1484316431_19348$$xAfter Call
000826116 520__ $$aDispersions of colloidal Gibbsite platelets in the nematic phase display a complex response to Large Amplitude Oscillatory Shear (LAOS) flow that strongly depends on the strain amplitude. [1] In this work we applied LAOStress and LAOStrain to the nematic dispersion and probed the structure with time-resolved SAXS measurements. By using plate-plate and couette geometry, we had access to both the flow-vorticity and flow-gradient plane, respectively. Thus we obtained the full 3D rotational motion of the director. [2]For LAOStress, we observe strong asymmetrical behaviour both in the rheological and the microscopic response. This asymmetry is connected to the yielding behaviour of the platelets. By increasing the stress amplitude we observed that the response becomes more symmetric; however, this strongly depends on the frequency, hence the time necessary for the system to yield. Softening of the response towards the centre of the gap was observed by scanning the gap while performing LAOStrain. The structural response at low strain amplitude does not propagate throughout the gap, where as at high strain amplitudes the response in the bulk emerges as erratic.
000826116 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000826116 7001_ $$0P:(DE-Juel1)161552$$aKorculanin, Olivera$$b1$$ufzj
000826116 7001_ $$0P:(DE-HGF)0$$aStruth$$b2
000826116 7001_ $$0P:(DE-HGF)0$$aMerino, Hermida$$b3
000826116 7001_ $$0P:(DE-HGF)0$$aRogers$$b4
000826116 909CO $$ooai:juser.fz-juelich.de:826116$$pVDB
000826116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130797$$aForschungszentrum Jülich$$b0$$kFZJ
000826116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161552$$aForschungszentrum Jülich$$b1$$kFZJ
000826116 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-HGF)0$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000826116 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000826116 9141_ $$y2016
000826116 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000826116 920__ $$lyes
000826116 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000826116 980__ $$aconf
000826116 980__ $$aVDB
000826116 980__ $$aUNRESTRICTED
000826116 980__ $$aI:(DE-Juel1)ICS-3-20110106