001     826187
005     20210129225536.0
024 7 _ |a 10.1109/ICMLA.2016.0133
|2 doi
024 7 _ |a 2128/13829
|2 Handle
037 _ _ |a FZJ-2017-00433
100 1 _ |a Bodenstein, Christian
|0 P:(DE-Juel1)164357
|b 0
|e Corresponding author
111 2 _ |a 15th IEEE International Conference on Machine Learning and Applications
|g IEEE ICMLA'16
|c Anaheim
|d 2016-12-18 - 2016-12-20
|w USA
245 _ _ |a Automatic Object Detection using DBSCAN for Counting Intoxicated Flies in the FLORIDA Assay
260 _ _ |c 2017
|b IEEE
295 1 0 |a ISBN 978-1-5090-6167-9
300 _ _ |a 746 - 751
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1486654205_14798
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a In this paper, we propose an instrumentation andcomputer vision pipeline that allows automatic object detectionon images taken from multiple experimental set ups. We demon-strate the approach by autonomously counting intoxicated fliesin the FLORIDA assay. The assay measures the effect of ethanolexposure onto the ability of a vinegar fly Drosophila melanogasterto right itself. The analysis consists of a three-step approach.First, obtaining an image of a large set of individual experiments,second, identify areas containing a single experiment, and third,discover the searched objects within the experiment. For theanalysis we facilitate well-known computer vision and machinelearning algorithms—namely color segmentation, threshold imag-ing and DBSCAN. The automation of the experiment enables anunprecedented reproducibility and consistency, while significantlydecreasing the manual labor.
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Götz, Markus
|0 P:(DE-Juel1)162390
|b 1
700 1 _ |a Jansen, Annika
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Scholz, Henrike
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 4
773 _ _ |a 10.1109/ICMLA.2016.0133
856 4 _ |u https://juser.fz-juelich.de/record/826187/files/Poster.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/826187/files/Poster.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/826187/files/Poster.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/826187/files/Poster.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/826187/files/Poster.jpg?subformat=icon-640
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/826187/files/paper.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/826187/files/paper.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/826187/files/paper.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/826187/files/paper.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/826187/files/paper.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:826187
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164357
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162390
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132239
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|2 G:(DE-HGF)POF3-500
|v Data-Intensive Science and Federated Computing
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2017
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21