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Abstract—In this paper, we propose an instrumentation and
computer vision pipeline that allows automatic object detection
on images taken from multiple experimental set ups. We demon-
strate the approach by autonomously counting intoxicated flies
in the FLORIDA assay. The assay measures the effect of ethanol
exposure onto the ability of a vinegar fly Drosophila melanogaster
to right itself. The analysis consists of a three-step approach.
First, obtaining an image of a large set of individual experiments,
second, identify areas containing a single experiment, and third,
discover the searched objects within the experiment. For the
analysis we facilitate well-known computer vision and machine
learning algorithms—namely color segmentation, threshold imag-
ing and DBSCAN. The automation of the experiment enables an
unprecedented reproducibility and consistency, while significantly
decreasing the manual labor.

Index Terms—Image Analysis, Computer Vision, Machine
Learning, FLORIDA Assay, DBSCAN, Biology, Flies, Genetics

I. INTRODUCTION

Object detection is one of the fundamental problems in
computer vision. It is concerned with identifying objects in an
image or video irrespective of variations to it, like for example
different viewpoints, scaling, rotation, translation or partial
obstruction. The literature proposes a multitude of approaches
to tackle the problem, such as feature matching, template
matching or machine learning. In this paper we propose a
method that is based on the latter, namely, the unsupervised
clustering algorithm DBSCAN and threshold imaging.

We demonstrate the approach by counting intoxicated vine-
gar flies Drosophila melanogaster. The data is generated with
the FLORIDA assay, which measures the effect on ethanol
onto the ability to right itself again after intoxication. This is
used to identify genes and neuronal mechanisms underlying
the intoxication effect. While we focus on the automation
of the FLORIDA assay, the pipeline could be generalized to
similar detection problems e.g. bacterial culture observation
on well plates.

The remainder of this paper is structured as follows.
Section II reviews related work, and Section III presents
background information on the FLORIDA assay and the used
algorithms. In sections IV and V the analysis process is pre-
sented in detail along with its implementation. An evaluation
of the approach based on experimentation data is discussed in

section VI and, finally, the paper is concluded in section VII
followed bv an outlook on improvements in section VIIIL.

II. RELATED WORK

Clustering is an established method for detecting and seg-
menting objects in images and videos. Some of the earlier
attempts date back to the 1970’s and 1980’s. Coleman et al. [7]
for instance propose an image segmentation method based on
K-Means [13], one of the fundamental clustering algorithms,
that is able to split a complete image into segments in the
respective color space. Similar research has been conducted
by Haralick et al. [14] in 1981 which is based upon hierar-
chical clustering and its different linkage types [13]. A good
summary of these earlier attempts is given by Kettaf et. al [16].

In biology and bio-medicine K-Means, and its adaptive and
fuzzy variants, are in widespread use, because of its robustness
to low image resolution and noise in the images. Examples
include tumor detection [18], volumetric reconstruction of the
left ventricle chamber [6] or automatic identification of brain
regions on MRT images [21]. More recently, density-based
approaches have become popular. Unlike K-Means based
approaches, they are able to directly detect non-circular objects
in images, without having to piece them together from a set of
sub-clusters, while at the same not requiring an exact number k
of clusters to be identified. Celebi et al. [5] for instance apply
DBSCAN [10] to segment an arbitrary amount of irregular
skin lesions in dermatological imagery. For our problem at
hand both of the above properties are desirable as we, first, do
not know the number of individual objects, second, observe
objects of arbitrary shapes. A more generalized method for
density-based object segmentation in images is given by Ye et
al [24] upon which we have based our approach.

III. BACKGROUND
This section provides an overview of the experimental set
up for data generation and used algorithms.

A. FLORIDA Assay

The “Full Loss Of Righting Reflex InDuced by Alcohol”
- FLORIDA assay is used to identify genes and neuronal net-
works underlying the ethanol induced loss of righting reflex,
a measure for the degree of intoxication. The experimental



animal is the common vinegar fly Drosophila melanogaster,
that is a useful genetic tool to study the mechanistic basis of
behaviors associated with alcoholism [22]. The vinegar flies
not only share common genes but also behavioral similarities
when intoxicated, and are therefore a useful genetic model
system to understand ethanol induced behaviors in humans.
Through alteration of genes in the specimen and subsequent
observation of mutants, it is possible to analyze changes of
behaviors that are associated with alcohol abuse disorders [22].
Concretely, the experiment is focused on the investigation of
the flies’ tolerance to the intoxication effect of ethanol. In
line with that, a population of flies is exposed to vaporizing
ethanol in experimentation vials. The individuals’ intoxication
level is recorded over time, by counting sedated flies. The
sedation is defined as flies that fail to right themselves after a
mechanic stimulation. This measure is also known as loss of
righting reflex. The experimentation procedure is summarized
as follows:

1) Multiple individuals, currently a group of 20, are placed
into an experimentation vial. 2) The vial is closed by an
ethanol soaked tissue which vaporizes over time. 3) In a
specified interval—currently 60 seconds—the vials are shaken
to startle the flies and identify the sedated flies that fail to
right themselves. 4) The number of intoxicated objects needs
to be determined in an image. 5) The experiments is terminated
when all flies are sedated. 6) The data analysis has to be
obtained for multiple vials containing groups of flies that are
treated in parallel.

B. DBSCAN

Clustering algorithms in the field of machine learning
are used to aggregate similar objects into common groups.
DBSCAN is a particular, density-based clustering algorithm
that was published 1996 by Ester et al. [10]. Its principal idea
is to find dense areas and to expand these recursively in order
to find clusters. A dense region is thereby formed by a point
that has within a given search radius e at least € neighboring
points, whereas 6 is called density threshold, or in literature
often referred as minPoints.
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Fig. 1. DBSCAN clustering with minPoints 6 = 4 and search radius e.

This dense area is also called the core of a cluster. For each
of the found neighbor points the density criteria is reapplied
and the cluster is consequently expanded. All points that do
not form a cluster core and that are not “absorbed” through
expansion are regarded as noise. A more formal definition can
be found in [10]. Two of the major advantages of DBSCAN
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Fig. 2. The automated experimentation setup. It is consisting of (1) an
electric engine, shaking the vials via a rotary crank, (2) a digital SLR, (3) a
spring suspension allowing horizontal motion, (4) a top lightning plate, (5)
the experimentation vials containing the fruit flies and (6) a notebook with
the analysis software, connected via USB to other devices.

compared to other traditional clustering algorithms, like K-
Means [13] for example, is that it can detect arbitrarily shaped
clusters without having to know the number of clusters apriori.

IV. ANALYSIS PROCESS

Counting the number of intoxicated flies is achieved in a
three-step sequential analysis process. First, a high resolution
image is retrieved from the FLORIDA laboratory setup’s
single-lens reflex (SLR) camera. Then, the vials are segmented
to enable individual fly counting for each vial. Finally, after
thresholding the image, the DBSCAN algorithm is used to
cluster the darker image areas. The result is then used to count
the number of flies in the image. Details of these steps are
described in the sections below.

A. The FLORIDA laboratory setup

The FLORIDA laboratory setup, illustrated in Figure 2, has
been built in order to enable the fully automatic counting of
sedated flies and consists of several sub-parts. The main part is
the holder plate for the experimentation vials, attached to the
outer framework through metal springs which allow horizontal
motion. The holder plate exhibits a grid of four by five vial
slots, permitting a analysis of 20 vials in parallel with each
vial equally holding 20 drosophila melanogaster.

The bottom of the holder plate is plastered with green
foil, enabling accurate segmentation of the vial slots. A SLR
camera is placed below the holder plate, with the lens faced
to the bottom of the vials. Sedates flies gathering at the vials’
bottoms can easily be captured by the camera, while flies in
upper regions fade out due to the opaque vial material. To
achieve a high contrast between flies and vial surface, a LED
light plate is placed above the holder plate to screen the vials.
As shown in Figure 2, an electronic engine is connected to
the holder plate, to shake the vials before the photo is taken
as to test the righting reflex. The SLR camera, the shaker
engine and the light plate are connected via USB to a PC and
can be controlled with our FLORIDA software. This includes
capturing and streaming images from the camera directly to
the program.



Fig. 3. The image processing steps from left to right—left: vial segmentation;
center: threshold image; right: resulting clusters.

B. Vial Segmentation

Before the actual flies can be detected, the vials have to be
found. Our first attempt was to use the Hough Transform [§]
for finding circles. While this method was able to find the vials
quickly, it does not provide the desired precision. Perspective
distortions of the camera let the vials shapes appear more
elliptical than circular. This is a problem that is difficult, while
not impossible to manage with this algorithm.

To provide fast and accurate vial segmentation a green
foil was glued on the underneath of the holder plate. This
enables the usage of simple color segmentation techniques
based on green screening (similar to what is done in movies).
For this, the image has to be converted from RGB (Red
Green Blue) to HSV (Hue Saturation Value) [11] color space,
since it separates the color information from intensity and
illumination. The hue value describes the color which should
be in range h = [40,80] for green, the saturation, or color
intensity, should be at least in range s = [150,255] and the
value, or illumination is between v = [10, 255], to avoid the
segmentation of complete dark regions. After a mask is created
that selects all pixels within these ranges, contours are detected
using the Teh-Chin chain approximation algorithm [23]. All
contours that contain an area of around a = 7?2, where 1 is
the predefined vial radius, are considered as vials.

The resulting vials mask is post-processed with an erosion
algorithm to smooth the edges. Furthermore, the contour points
are moved few pixels towards the image center where outer
points are stronger affected than inner points. This rubber band
effect has the purpose to correct the different perspective view
angles on the vials. The results are stored as polygons which
can be used to create an image mask for the associated vial.

C. Threshold Clustering

After the vial segmentation step, each vial can now be
analyzed separately. For this, the RGB image is converted first
into a gray scale image and then the vial mask is used to
whiten everything but the considered vial. Then, a threshold 7
is defined. Given the image width X and image height Y, all
pixels p, . in the resulting image P are binarized using the
following function:

255 i pyy, <7
Pzy = 0
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Fig. 4. The graphical user interface of the FLORIDA software with the to
be analyzed image on the left and parameter settings on the right

This means, all pixels below the threshold are considered to
belong to a fly and are mapped to white, while all other pixels
are mapped to black. The coordinates of the white pixels W
are then extracted:

W =A{(z,y)lVe € [, X]vy € [1,Y] : psy >0} (2)

These are then fed to DBSCAN:

C, N = DBSCAN(e, 0, W) 3)

Whereby C' are the resulting cluster labels and IV the pixels
considered to be noise.

D. Fly Counting

Finally, the found clusters C' have to be counted. The naive
approach is to consider each cluster to represent a single fly.
However, due to being close to one another, a single cluster
may contain multiple flies, as seen in Figure 3, this will result
in miscounts. Therefore, the fly count f is predicted as such:
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With p being an additional pixels per fly parameter, defining
the amount of cluster pixels (JC;|) that will count as single
fly. While more complex algorithms have been considered to
overcome the problem, this solution is fast and yields sufficient
performance. The threshold clustering and fly counting steps
are repeated for each found vial in the image.

V. IMPLEMENTATION

The entire analysis process is implemented as part of a
standalone GUI application that is operated by the laboratory
assistants of the FLORIDA experiment. Figure 4 depicts an
example of the interface, while the next section describe
details.



A. Controls

The interface of the FLORIDA software is divided into five
major parts. On top of the window is a menu bar that allows to
load and store experimentation settings, if the defaults saved
on the last exit are undesired. Below that, is another menu bar
that is focused on controlling the external devices. It allows
to automatically detect and set up the external devices and
take a fresh picture with the camera. Moreover, the currently
displayed picture analysis mode—that is raw, threshold or
clustering—can be selected here as well as vial detection
rendering toggled. The actual image is displayed in the center
of the GUI window.

On the right side of the window is a pane with the
experimentation settings. Here, the FLORIDA laboratory as-
sistants can configure analysis parameters, like ¢, 6, p, device
properties, like the shake time and its lead, as well as result
options, like e.g. the path, where the results are stored in a
comma-separated value format. On the bottom of the main
application window a system log is displayed. It informs the
user about the software’s status, which includes among other
things which devices are connected and which not. The logger
can be closed at anytime in order to enlarge the image and can
be re-opened via the top menu.

B. Software

The source code of the software can be obtained from the
authors’ public Github repository [3] and is licensed under
BSD-style restrictions, meaning it can be used and modified
free of charge. It is written in C++ with the help of the
Qt programming framework [1] and the interface has been
designed using its built-in creator suite.

In order to communicate with the external devices and to
analyze the images the FLORIDA software requires other
software dependencies, all of them being open-source as
well. For obtaining images from the SLR libgphoto2 [15]
is utilized. This library enables camera control automation
including image streaming to computers. Supporting a large
set of models from common vendors allows a transparent
exchange of the actual SLR. The shaker, or electric engine, is
remote controlled via an USB relay that is programmed using
libusb [9], implementing only the required packages to turn it
on or off. Due to the use of a standardized communication
protocol for the relay, an exchange of the USB relay is
possible.

Internally, the FLORIDA software employs two software
packages to process the images. On the one hand, we have
OpenCV [4] providing convenience functions for image edit-
ing, like color space conversion, cropping, threshold and so
forth. On the other hand, a stripped down OpenMP-version of
HPDBSCAN [12]—a parallel processing variant of the regular
DBSCAN—is used, to fully utilize the computer’s processing
capabilities. An installation script for the FLORIDA software
can be found in the Github repository, effectively obtaining
the newest version, compiling it and installing it, including
setting correct access rights for the devices.

(a) Samples from data set D

(b) Samples from data set D

Fig. 5. Samples from two different FLORIDA experiments. While D g
was contains high quality images, the data from Dp differs in terms of
illumination and resolution.

C. Hardware

In the current FLORIDA experimentation setup a dual-core
laptop with 2.0 GHz and 2 GB of RAM is controlling the other
devices. On it is the Fedora 21 operating system installed. The
pictures are taken by a Canon EOS 5D Mark I SLR camera,
which has a native resolution of 4368 x 2912 pixels and
full frame image sensor format. The high resolution provides
enough image quality to record 20 vials concurrently. The vials
are shaken by a electric engine that is switched on and off by
a 7’single channel 5V USB Control switch”.

VI. EVALUATION

An important aspect of each machine learning pipeline is
to measure its performance. For the FLORIDA experiment,
dedicated validation data sets have been collected and the
model parameter were compared to each other by a well
defined loss function. The results of these steps can be found
in this section.

A. Datasets

To make an evaluation possible, two datasets have been
recorded. The first data set Dy is obtained from an accelerated
FLORIDA experiment. Instead of capturing one image each
60 seconds, the interval has been decreased to 15 seconds to
increase the number of resulting images. At the point when all
flies were sedated and after the removal of poor quality images
a total number of 1381 vials image were gathered. This dataset
still includes low quality pictures in terms of illumination and
noise that should not occur in an actual analysis environment.
However, we decided to keep this images in the dataset to give
machine learning algorithms the chance to be more sensitive
to these outliers. The second data set D was recorded in the
regular one minute interval over 44 minutes total, resulting
in a collection of 880 vials. While Dy will be considered
as a benchmark dataset to build more robust models, Dp is



TABLE I
GRID SEARCH RANGES—GRAND TOTAL OF 39,900 COMBINATIONS

| Min | Max | Step
90 120 5
2
1

Threshold (1)
Epsilon (€)
MinPts (0)

PixelsPerFly (p)

11 1
19 1
100 | 390 10

considered as real experimental data set. All recorded vials
have been counted manually and are available on the research
repository B2SHARE [2].

B. Parameter search

As a next step, the parameters for the algorithms needed
to be found. While the vial size 1) can be easily determined
by measuring it on the images, the parameters 7 (threshold),
€ (DBSCAN search radius), # (DBSCAN density threshold)
and p (pixels per fly) are more difficult to estimate and are
highly dependent on each other.

First, we introduce a user experience parameter set (UEPS)
which is simply a set of parameters that have been defined by
laboratory assistants, while experimenting with the FLORIDA
software and that provide sufficient enough counting accuracy.
These parameters are:

T 100
€ )

UEPS = ol =115 5)
p 200

While the UEPS represents just the manual users subjective
perception, an automated grid search about a certain range
of parameter sets has been performed. With help of the
JURECA [17] supercomputer, the grid search over 39,900
total parameter sets could be computed in parallel. In Table I
one can find the parameter ranges that have been searched.

The grid search sorts the parameter sets ascending by the
mean squared error (MSE) value on Dr. We also provide the
R? value, which is another efficient metric to compare the sum
of squared errors to the variance of the data.

_SSE; >i(fi = fi)? ©)
Vy >ilfi = f)?

Where f; is the actual number of flies fl the predicted
number of flies and f the mean number of flies. This value
tends to one, if the model perfectly predicts the desired
outcome and is zero, if the prediction is equals to the mean.
Additionally, the MSE and R? values were computed for Dy .
The top five parameter sets with respect to their MSE on Dg
can be found in Table II.

R?=1

C. Interpretation

The gird search shows that small values for € and 6 are
favorable and that a threshold 7 around 90 yields the best
results. Moreover, p tends to be smaller than initially guessed
in the UEPS. Given that the values of € and 6 are set below to

163.63

52.58

1.5

log(MSE)
1
16.90

0.5

2 5.43

10 4

MinPts 6
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Fig. 6. Three-dimensional projection of the grid search. The DBSCAN
parameters € and € are compared to the resulting MSE. The dark blue regions
contain the lowest MSE values.

a certain range the error increases drastically, as one can see
in Figure 6.

As expected, the MSE and R? values are significantly higher
for the Dy data set. A possible explanation is the different
illumination in the data, where extreme dark regions could be
perceived as large fly clusters, or flies with low contrast would
not be recognized as such. In order to handle this problem, one
would require a dynamical threshold to binarize the image,
depending on its light properties. Interestingly enough, the top
five parameter sets with the highest pixels per fly value p
result in the lowest MSE on D ;. This underlines the statement
from above, that large p values will result in a lower MSE for
accidentally misclassified fly clusters.

The MSE of 1.745 on Dp is equal to a standard deviation
of 1.32 miscounted flies on all images. The results in Table II
and the flat grid search surface in Figure 6 indicate that the
most optimal parameter sets are similar to one another and
robust enough for experimentation conditions. Therefore, we
suggest to use the best found parameter set, further referred
as grid search parameter set (GSPS) which is:

T 90

Ggsps— €| = | 3 7)
9 9
P 160

Furthermore, in case of deviating experiment environments,
new parameters can be found by using the GSPS as a basis.

TABLE II
GRIDSEARCH TOP FIVE RESULTS

#] 7 |e| 0] p ||MSEp, | R}, |MSEp, | R}
T[[90 [3]9 [160]|[ 1745 [0946 | 12433 | 0.727
20| 90 [3] 9 |150| 1750 |0.946| 12912 | 0.717
30195 [3|15]160 | 1.757 | 0946 | 19.233 | 0.578
41190 |39 [200] 1768 |0946| 11.355 | 0.751
50| 90 [3]10|160 | 1770 |0.946 | 12.559 | 0.724
UEPS || 100 | 5| 15| 200 || 3325 |0.899 | 26.732 | 0.414
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Fig. 7. Absolute miscounting errors made by our model, using the grid search
parameter set (GSPS).

The MSE performance increase of the GSPS over the initial
UEPS is 190% for Dg and 215% for D . While this is an
significant improvement, the MSE may not provide enough
information to validate how accurate the model counts flies.
By listing the occurrences of miscounted flies in Figure 7, the
reader should get an impression of the model’s performance.
In the Dp data set, nearly half of the vials has been counted
correctly, while another 45% of the vials were miscounted by
one to two flies. Only five percent show up higher error rates
with up to seven miscounts. The performance in Dy shows
that the number of correctly counted flies is lower, but the main
drop in performance comes from a low number of extremely
high errors. As mentioned before, this could be attributed to
dark regions that are misclassified as flies.

In summary the performance of the model exceeds our
expectations. Nevertheless, for dark and noisy images a more
robust model is required. For well prepared, equally illumi-
nated experiment environments the accuracy of the model is
sufficient.

VII. CONCLUSION

In this paper we presented an automatic image analysis
pipeline that allows the counting of intoxicated fruit flies in the
FLORIDA assay. We have proposed both, a experimentation
setup for devices as well as the analyzing algorithms. The
latter was implemented in a GUI application that is currently
in productive use at the University of Cologne. In an empirical
evaluation of the software we were able to obtain an MSE of
1.745. An adaptation of the method to similar segmentation
and counting problems in lab environments is possible through
the adjustment of a few model parameters.

VIII. FUTURE WORK

More robust models lead to generalization for more scien-
tific domains. One idea is to use the generated fly masks from
our model, to train a segmentation convolutional neural net-
work as proposed in [19]. With the help of data augmentation,
i.e. modifying illumination and rotation, a robust model could
be trained, without the need for an explicit threshold parameter
tuning. Another approach is to train a convolution neural
network through reinforcement learning similar to what Mnih
et al. [20] described, in order to dynamically adapt the models

parameters to the image. Finally, image classification could be
used on the found clusters, to discover multiple flies in one
cluster. This step would need the creation of an additional
data set, providing images of found clusters and labeled with
the number of visible flies. This paper will be followed by
biological experiments at the University of Cologne.
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