000826190 001__ 826190
000826190 005__ 20210129225537.0
000826190 0247_ $$2doi$$a10.1088/1361-6668/30/3/033002
000826190 0247_ $$2ISSN$$a0953-2048
000826190 0247_ $$2ISSN$$a1361-6668
000826190 0247_ $$2WOS$$aWOS:000392203800001
000826190 037__ $$aFZJ-2017-00436
000826190 082__ $$a530
000826190 1001_ $$0P:(DE-HGF)0$$aLiarte, Danilo B$$b0
000826190 245__ $$aTheoretical estimates of maximum fields in superconducting resonant radio frequency cavities: stability theory, disorder, and laminates
000826190 260__ $$aBristol$$bIOP Publ.$$c2017
000826190 3367_ $$2DRIVER$$aarticle
000826190 3367_ $$2DataCite$$aOutput Types/Journal article
000826190 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484563450_30760
000826190 3367_ $$2BibTeX$$aARTICLE
000826190 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826190 3367_ $$00$$2EndNote$$aJournal Article
000826190 520__ $$aTheoretical limits to the performance of superconductors in high magnetic fields parallel to their surfaces are of key relevance to current and future accelerating cavities, especially those made of new higher-T c materials such as Nb3Sn, NbN, and MgB2. Indeed, beyond the so-called superheating field ${H}_{\mathrm{sh}}$, flux will spontaneously penetrate even a perfect superconducting surface and ruin the performance. We present intuitive arguments and simple estimates for ${H}_{\mathrm{sh}}$, and combine them with our previous rigorous calculations, which we summarize. We briefly discuss experimental measurements of the superheating field, comparing to our estimates. We explore the effects of materials anisotropy and the danger of disorder in nucleating vortex entry. Will we need to control surface orientation in the layered compound MgB2? Can we estimate theoretically whether dirt and defects make these new materials fundamentally more challenging to optimize than niobium? Finally, we discuss and analyze recent proposals to use thin superconducting layers or laminates to enhance the performance of superconducting cavities. Flux entering a laminate can lead to so-called pancake vortices; we consider the physics of the dislocation motion and potential re-annihilation or stabilization of these vortices after their entry.
000826190 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000826190 588__ $$aDataset connected to CrossRef
000826190 7001_ $$00000-0002-6499-306X$$aPosen, Sam$$b1
000826190 7001_ $$0P:(DE-HGF)0$$aTranstrum, Mark K$$b2
000826190 7001_ $$0P:(DE-Juel1)151130$$aCatelani, Gianluigi$$b3$$eCorresponding author$$ufzj
000826190 7001_ $$0P:(DE-HGF)0$$aLiepe, Matthias$$b4
000826190 7001_ $$0P:(DE-HGF)0$$aSethna, James P$$b5
000826190 773__ $$0PERI:(DE-600)1361475-7$$a10.1088/1361-6668/30/3/033002$$gVol. 30, no. 3, p. 033002 -$$n3$$p033002 -$$tSuperconductor science and technology$$v30$$x1361-6668$$y2017
000826190 8564_ $$uhttps://juser.fz-juelich.de/record/826190/files/Liarte_2017_Supercond._Sci._Technol._30_033002.pdf$$yRestricted
000826190 8564_ $$uhttps://juser.fz-juelich.de/record/826190/files/Liarte_2017_Supercond._Sci._Technol._30_033002.pdf?subformat=pdfa$$xpdfa$$yRestricted
000826190 909CO $$ooai:juser.fz-juelich.de:826190$$pVDB
000826190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich$$b3$$kFZJ
000826190 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000826190 9141_ $$y2017
000826190 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000826190 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000826190 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUPERCOND SCI TECH : 2015
000826190 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826190 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826190 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826190 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826190 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826190 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826190 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826190 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826190 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826190 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000826190 920__ $$lyes
000826190 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000826190 980__ $$ajournal
000826190 980__ $$aVDB
000826190 980__ $$aI:(DE-Juel1)PGI-2-20110106
000826190 980__ $$aUNRESTRICTED