001     826196
005     20240712101012.0
024 7 _ |a 10.5194/acp-17-645-2017
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/13447
|2 Handle
024 7 _ |a WOS:000393892700002
|2 WOS
024 7 _ |a altmetric:15449824
|2 altmetric
037 _ _ |a FZJ-2017-00442
082 _ _ |a 550
100 1 _ |a Fuchs, Hendrik
|0 P:(DE-Juel1)7363
|b 0
|e Corresponding author
245 _ _ |a OH reactivity at a rural site (Wangdu) in the North China Plain: contributions from OH reactants and experimental OH budget
260 _ _ |a Katlenburg-Lindau
|c 2017
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1484570392_30757
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In 2014, a large, comprehensive field campaign was conducted in the densely populated North China Plain. The measurement site was located in a botanic garden close to the small town Wangdu, without major industry but influenced by regional transportation of air pollution. The loss rate coefficient of atmospheric hydroxyl radicals (OH) was quantified by direct measurements of the OH reactivity. Values ranged between 10 and 20 s−1 for most of the daytime. Highest values were reached in the late night with maximum values of around 40 s−1. OH reactants mainly originated from anthropogenic activities as indicated (1) by a good correlation between measured OH reactivity and carbon monoxide (linear correlation coefficient R2 = 0.33) and (2) by a high contribution of nitrogen oxide species to the OH reactivity (up to 30 % in the morning). Total OH reactivity was measured by a laser flash photolysis–laser-induced fluorescence instrument (LP-LIF). Measured values can be explained well by measured trace gas concentrations including organic compounds, oxygenated organic compounds, CO and nitrogen oxides. Significant, unexplained OH reactivity was only observed during nights, when biomass burning of agricultural waste occurred on surrounding fields. OH reactivity measurements also allow investigating the chemical OH budget. During this campaign, the OH destruction rate calculated from measured OH reactivity and measured OH concentration was balanced by the sum of OH production from ozone and nitrous acid photolysis and OH regeneration from hydroperoxy radicals within the uncertainty of measurements. However, a tendency for higher OH destruction compared to OH production at lower concentrations of nitric oxide is also observed, consistent with previous findings in field campaigns in China.
536 _ _ |a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|0 G:(DE-HGF)POF3-243
|c POF3-243
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Tan, Zhaofeng
|0 P:(DE-Juel1)157909
|b 1
700 1 _ |a Lu, Keding
|0 P:(DE-Juel1)6776
|b 2
700 1 _ |a Bohn, Birger
|0 P:(DE-Juel1)2693
|b 3
|u fzj
700 1 _ |a Broch, Sebastian
|0 P:(DE-Juel1)7591
|b 4
700 1 _ |a Brown, Steven S.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Dong, Huabin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Gomm, Sebastian
|0 P:(DE-Juel1)8954
|b 7
700 1 _ |a Häseler, Rolf
|0 P:(DE-Juel1)5628
|b 8
|u fzj
700 1 _ |a He, Lingyan
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Hofzumahaus, Andreas
|0 P:(DE-Juel1)16326
|b 10
|u fzj
700 1 _ |a Holland, Frank
|0 P:(DE-Juel1)16342
|b 11
|u fzj
700 1 _ |a Li, Xin
|0 P:(DE-Juel1)6775
|b 12
|u fzj
700 1 _ |a Liu, Ying
|0 P:(DE-Juel1)165976
|b 13
700 1 _ |a Lu, Sihua
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Min, Kyung-Eun
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Rohrer, Franz
|0 P:(DE-Juel1)16347
|b 16
|u fzj
700 1 _ |a Shao, Min
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Wang, Baolin
|0 P:(DE-Juel1)165975
|b 18
700 1 _ |a Wang, Mingjin
|0 P:(DE-Juel1)157833
|b 19
700 1 _ |a Wu, Yusheng
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Zeng, Limin
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Zhang, Yinsong
|0 P:(DE-Juel1)157908
|b 22
700 1 _ |a Wahner, Andreas
|0 P:(DE-Juel1)16324
|b 23
|u fzj
700 1 _ |a Zhang, Yuanhang
|0 P:(DE-HGF)0
|b 24
773 _ _ |a 10.5194/acp-17-645-2017
|g Vol. 17, no. 1, p. 645 - 661
|0 PERI:(DE-600)2069847-1
|n 1
|p 645 - 661
|t Atmospheric chemistry and physics
|v 17
|y 2017
|x 1680-7324
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/826196/files/acp-17-645-2017.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/826196/files/acp-17-645-2017.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/826196/files/acp-17-645-2017.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/826196/files/acp-17-645-2017.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/826196/files/acp-17-645-2017.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/826196/files/acp-17-645-2017.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:826196
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)7363
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)2693
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)7591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)5628
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)16326
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)16342
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)6775
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)16347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 23
|6 P:(DE-Juel1)16324
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|2 G:(DE-HGF)POF3-200
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21