| 001 | 826208 | ||
| 005 | 20240610120750.0 | ||
| 024 | 7 | _ | |a 10.1103/PhysRevLett.117.132501 |2 doi |
| 024 | 7 | _ | |a 0031-9007 |2 ISSN |
| 024 | 7 | _ | |a 1079-7114 |2 ISSN |
| 024 | 7 | _ | |a 1092-0145 |2 ISSN |
| 024 | 7 | _ | |a arXiv:1602.04539 |2 arXiv |
| 024 | 7 | _ | |a 2128/13609 |2 Handle |
| 024 | 7 | _ | |a WOS:000383848500001 |2 WOS |
| 024 | 7 | _ | |a altmetric:5614673 |2 altmetric |
| 024 | 7 | _ | |a pmid:27715077 |2 pmid |
| 037 | _ | _ | |a FZJ-2017-00454 |
| 082 | _ | _ | |a 550 |
| 100 | 1 | _ | |a Elhatisari, Serdar |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Nuclear Binding Near a Quantum Phase Transition |
| 260 | _ | _ | |a College Park, Md. |c 2016 |b APS |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1502116839_15122 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a Published version to appear in Physical Review Letters. Main: 5 pages, 3 figures. Supplemental material: 13 pages, 6 figures |
| 520 | _ | _ | |a How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (4He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. This insight should be useful in improving calculations of nuclear structure and important astrophysical reactions involving alpha capture on nuclei. Our findings also provide a tool to probe the structure of alpha cluster states such as the Hoyle state responsible for the production of carbon in red giant stars and point to a connection between nuclear states and the universal physics of bosons at large scattering length. |
| 536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |x 0 |f POF III |
| 536 | _ | _ | |a DFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076) |0 G:(GEPRIS)196253076 |c 196253076 |x 1 |
| 536 | _ | _ | |a Nuclear Lattice Simulations (hfz02_20150501) |0 G:(DE-Juel1)hfz02_20150501 |c hfz02_20150501 |x 2 |f Nuclear Lattice Simulations |
| 588 | _ | _ | |a Dataset connected to arXivarXiv, CrossRef |
| 700 | 1 | _ | |a Li, Ning |0 P:(DE-Juel1)159474 |b 1 |u fzj |
| 700 | 1 | _ | |a Rokash, Alexander |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Alarcón, Jose Manuel |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Du, Dechuan |0 P:(DE-Juel1)161155 |b 4 |
| 700 | 1 | _ | |a Klein, Nico |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Lu, Bing-nan |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Meißner, Ulf-G. |0 P:(DE-Juel1)131252 |b 7 |u fzj |
| 700 | 1 | _ | |a Epelbaum, Evgeny |0 P:(DE-Juel1)131142 |b 8 |
| 700 | 1 | _ | |a Krebs, Hermann |0 P:(DE-Juel1)131216 |b 9 |
| 700 | 1 | _ | |a Lähde, Timo A. |0 P:(DE-HGF)0 |b 10 |
| 700 | 1 | _ | |a Lee, Dean |0 P:(DE-Juel1)156278 |b 11 |u fzj |
| 700 | 1 | _ | |a Rupak, Gautam |0 P:(DE-HGF)0 |b 12 |
| 773 | _ | _ | |a 10.1103/PhysRevLett.117.132501 |g Vol. 117, no. 13, p. 132501 |0 PERI:(DE-600)1472655-5 |n 13 |p 132501 |t Physical review letters |v 117 |y 2016 |x 1079-7114 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/826208/files/PhysRevLett.117.132501.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/826208/files/PhysRevLett.117.132501.gif?subformat=icon |x icon |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/826208/files/PhysRevLett.117.132501.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/826208/files/PhysRevLett.117.132501.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/826208/files/PhysRevLett.117.132501.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/826208/files/PhysRevLett.117.132501.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:826208 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)159474 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)131252 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)156278 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
| 914 | 1 | _ | |y 2016 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV LETT : 2015 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PHYS REV LETT : 2015 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-4-20090406 |k IAS-4 |l Theorie der Starken Wechselwirkung |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IKP-3-20111104 |k IKP-3 |l Theorie der starken Wechselwirkung |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)NIC-20090406 |k NIC |l John von Neumann - Institut für Computing |x 2 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-4-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)IKP-3-20111104 |
| 980 | _ | _ | |a I:(DE-Juel1)NIC-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IAS-4-20090406 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|