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We present results for pion polarizabilities predicted using dispersion relations from our earlier

amplitude analysis of world data on two photon production of meson pairs. The helicity-zero polar-

izabilities are rather stable and insensitive to uncertainties in cross-channel exchanges. The need is first to

confirm the recent result on ðα1 − β1Þ for the charged pion by COMPASS at CERN to an accuracy of 10%

by measuring the γγ → πþπ− cross section to an uncertainty of 1%. Then the same polarizability, but for π0,

is fixed to be ðα1 − β1Þπ0 ¼ ð0.9� 0.2Þ × 10−4 fm3. By analyzing the correlation between uncertainties in

the meson polarizability and those in γγ cross sections, we suggest experiments need to measure these cross

sections between
ffiffiffi

s
p

≃ 350 and 600 MeV. The π0π0 cross section then makes the ðα2 − β2Þπ0 the easiest
helicity-two polarizability to determine.

DOI: 10.1103/PhysRevD.94.116021

I. INTRODUCTION

There has long been interest in studying pion electro-

magnetic polarizabilities [1,2]: the electric polarizability α

and the magnetic polarizability β. These characterize the

pion’s rigidity against deformation in an external electro-

magnetic field. The pion polarizability may also play an

important role [3] in the hadronic light-by-light scattering

contribution to ðg − 2Þμ [4]. Compton scattering is the ideal

way to test polarizabilities as the strong interaction is strong

and so compacts quarks and gluons together to form a stiff

hadron. Over the years this has motivated both experi-

mental and theoretical efforts. On the theory side, chiral

perturbation theory (χPT) gives predictions calculated first

to Oðp4Þ [1,5,6] and up to Oðp6Þ from [7,8]. On the

experimental side, measurements have been made from the

pion radiative scattering π−ZðAÞ→ γπ−ZðAÞ by IHEP in

Serpukhov, Russia [9], from radiative photoproduction on

hydrogen γp → γπþn by the Lebedev Physical Institute

[10] and MAMI [11], and from π−Ni → γπ−Ni with

COMPASS [12].
Recently a proposal has been accepted to study polar-

izabilities by measuring low energy γγ → πþπ− [13] in Hall
D at Jefferson Lab. The issue is then how well such
measurements determine the pion polarizability: reliability
and accuracy. This is the issue we address here. In our
previous work [14] we made a precise amplitude analysis

of extant data on γγ → ππ, K̄K up to
ffiffiffi

s
p ¼ 1.5 GeV, and

built a dispersive way to calculate amplitudes in the low
energy region. This makes a prediction of pion polar-
izability possible. The paper is organized as follows: in
Sec. II we give the formalism for the underlying amplitudes
and their relation to pion polarizabilities. In Sec. III we give
our prediction for pion polarizabilities, and consider the
correlation between the cross section and the pion polar-
izability to assess the energy domain where sensitivity is
greatest. Finally we summarize.

II. FORMALISM FOR PION POLARIZABILITIES

A. Amplitudes

As is well known, pion polarizabilities are determined by
how the amplitudes for Compton scattering, γπ → γπ,
approach threshold. With Compton scattering in the t
and u channels, threshold is the kinematic point s ¼ 0,

t ¼ u ¼ m2
π . While exactly at this threshold the amplitudes

are fixed by Low’s low energy theorem and given by one
pion exchange, the deviation from this Born amplitude as
s → 0 reflects the rigidity of the pion that define the
polarizabilities. By crossing these are, of course, the γγ →
ππ amplitudes continued to s → 0 [2,8,15–17]. Dispersion
relations provide the natural and effective way to continue
the γγ amplitude analytically to this unphysical region.
Here we use the partial wave dispersion relation established

in [14], for F I
JλðsÞ, the γγ → ππ amplitudes with definite

ππ isospin I, spin J, and the photon helicity λ. BI
JλðsÞ

denote the corresponding Born contributions. Each of the
amplitudes F ðsÞ has a phase φðsÞ. From these we can
define an Omnès function [18],
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Ω
I
JλðsÞ ¼ exp

�

s

π

Z

∞

sth

ds0
φI
Jλðs0Þ

s0ðs0 − sÞ

�

: ð1Þ

Then using constraints such as Low’s low energy theorem
and the required threshold behavior, we can write
dispersion relations for the partial waves. These have
contributions from the right-hand (unitarity) cut and from

the left-hand cut (LHC). The latter is controlled by t- and u-
channel exchanges, both single and multiparticle. This
contribution is determined by the explicit one pion
exchange Born amplitude, plus the rest which defines a

contribution to F I
JλðsÞ that we call LI

JλðsÞ.
For S-wave amplitudes, these have one subtraction use-

fully taken at s ¼ 0 by considering ðF ðsÞ − BðsÞÞΩ−1ðsÞ=s:

F I
00
ðsÞ ¼ BI

SðsÞ þ bIsΩI
0
ðsÞ þ s2ΩI

0
ðsÞ

π

Z

L

ds0
Im½LI

00
ðs0Þ�ΩI

0
ðs0Þ−1

s02ðs0 − sÞ −
s2ΩI

0
ðsÞ

π

Z

R

ds0
BI
Sðs0ÞIm½ΩI

0
ðs0Þ−1�

s02ðs0 − sÞ ; ð2Þ

where the bI (with I ¼ 0, 2) are subtraction constants given by

bI¼0 ¼
ffiffiffi

3
p

ΣðsnÞ −
ffiffiffi

6
p

mπ

4α
ðα1 − β1ÞπþΩ2

0
ðsnÞ

Ω
0

0
ðsnÞ þ 2Ω2

0
ðsnÞ

;

bI¼2 ¼ −
ffiffiffi

6
p

ΣðsnÞ −
ffiffiffi

3
p

mπ

4α
ðα1 − β1ÞπþΩ0

0
ðsnÞ

Ω
0

0
ðsnÞ þ 2Ω2

0
ðsnÞ

; ð3Þ

with

ΣðsÞ ¼ −

ffiffiffi

1

3

r

snΩ
I¼0ðsnÞ
π

 

Z

R

ds0

ffiffi

2

3

q

BSðsÞIm½Ω0

0
ðs0Þ−1�

s02ðs0 − sÞ þ
Z

L

ds0
Im½L0

00
ðs0Þ�Ω0

0
ðs0Þ−1

s02ðs0 − sÞ

!

þ
ffiffiffi

2

3

r

snΩ
I¼2ðsnÞ
π

 

Z

R

ds0

ffiffi

1

3

q

BSðsÞIm½Ω2

0
ðs0Þ−1�

s02ðs0 − sÞ þ
Z

L

ds0
Im½L2

00
ðs0Þ�Ω2

0
ðs0Þ−1

s02ðs0 − sÞ

!

:

s ¼ sn is the position of the Adler zero in the γγ → π0π0 S-wave. Its position is at sn ¼ ð1� 0.2Þm2

π0
, from χPT. For waves

with higher spin, i.e. J > 0, we write unsubtracted dispersion relations for ðF ðsÞ − BðsÞÞΩ−1ðsÞ=snðs − 4m2
πÞJ=2:

F I
JλðsÞ ¼ BI

JλðsÞ þ
snðs − 4m2

πÞJ=2
π

Ω
I
JðsÞ

Z

L

ds0
Im½LI

Jλðs0Þ�ΩI
Jðs0Þ−1

s0nðs0 − 4m2
πÞJ=2ðs0 − sÞ

−
snðs − 4m2

πÞJ=2
π

Ω
I
JðsÞ

Z

R

ds0
BI
Jλðs0ÞIm½ΩI

Jðs0Þ−1�
s0nðs0 − 4m2

πÞJ=2ðs0 − sÞ ; ð4Þ

where n ¼ 2 − λ=2. As we will discuss later, the polarizabilities are related to bI and RI
JλðsÞ [see Eqs. (11) and (A1)].

B. Left-hand cut contribution from single particle exchange

An idea of what the left-hand cut looks like can be estimated by considering single particle exchanges [14,19–21]. Of
course, single particle exchange in the γγ process is a resonance in Compton scattering. We list the imaginary parts, required
in evaluating Eqs. (2) and (4), from ρ, ω, b1, h1, a1, and an effective tensor resonance T:

ImL0

Jλ
RχTðsÞ ¼ −

ffiffiffi

3

2

r

ImLρ;JλðsÞ −
ffiffiffi

1

6

r

ImLω;JλðsÞ −
ffiffiffi

3

2

r

ImLb1;Jλ
ðsÞ

−

ffiffiffi

1

6

r

ImLh1;Jλ
ðsÞ −

ffiffiffi

2

3

r

ImLa1
ðsÞ þ ImLT;JλðsÞ;

ImL2

Jλ
RχTðsÞ ¼

ffiffiffi

1

3

r

ImLω;JλðsÞ þ
ffiffiffi

1

3

r

ImLh1;Jλ
ðsÞ −

ffiffiffi

1

3

r

ImLa1;Jλ
ðsÞ þ ImLT;JλðsÞ; ð5Þ
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where, withMR, the mass of the resonance in the Compton
channel,

ImLR;SðsÞ¼−NR
JλπC

2
RM

2
R=ρðsÞ;

ImLR;D0ðsÞ¼
ffiffiffi

5

p
NR

JλπC
2
RM

2
R½1−3X2ðMR;sÞ�=2ρðsÞ;

ImLR;D2ðsÞ¼
ffiffiffiffiffi

30
p

NR
JλπC

2
RsρðsÞ½1−X2ðMR;sÞ�2=16; ð6Þ

and

XðM; sÞ ¼ 2M2 − 2m2
π þ s

sρðsÞ ;

with ρðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4m2
π=s

q

: ð7Þ

Note that the normalization factors NR
Jλ are as follows:

FIG. 1. Left-hand cut modeled by single particle exchanges ρ, ω, b1, h1, a1, and the tensor T. The mass of the “effective” tensor
resonance (MT) is set to 1.4, 0.8, 3.0 GeV for the solid black, dashed red, and dotted blue lines, respectively.
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Nω
J0;J2 ¼ 1; N

ρ
J0;J2 ¼

1

9
; N

a1
J0 ¼

1

4
; N

a1
J2 ¼ −

1

4
;

N
b1
J0 ¼ −

1

36
; N

b1
J2 ¼

1

36
; N

h1
J0 ¼ −

1

4
; N

h1
J2 ¼

1

4
:

The coefficients of CR are fixed from the decay widths R → πγ [14]. The couplings of the effective T-exchange are fixed by

demanding that the sum of the exchange contributions cancel when s →∞. This is why C2
T can be negative:

Cρ ¼ 1.25� 0.08; Cω ¼ 1.15� 0.02; Ca1
¼ 1.08� 0.21; Cb1;h1

¼ 1.95� 0.25;

C2
Tð0S0Þ ¼ 0.477; C2

Tð0D0Þ ¼ 1.403; C2
Tð0D2Þ ¼ 0.354;

C2
Tð2S0Þ ¼ −0.048; C2

Tð2D0Þ ¼ −0.053; C2
Tð2D2Þ ¼ −0.509;

with CR given in units of GeV−1. The resulting left-hand cut terms are then shown in Fig. 1. Changing the mass of the
effective resonance T from 0.8 to 3.0 GeV, the left-hand cut contributions vary little for the isospin two S-waves and D0-

waves. This is a consequence of the coefficients C2
T being rather small for these two waves. The difference in contributions

is shown in Fig. 1.

C. Pion polarizabilities

From our two photon partial wave amplitudes, we have scattering amplitudes for γγ → ππ,

Mþþðs; θ;ϕÞ ¼ e2
ffiffiffiffiffiffiffiffi

16π
p X

J≥0

FJ0ðsÞYJ0ðθ;ϕÞ;

Mþ−ðs; θ;ϕÞ ¼ e2
ffiffiffiffiffiffiffiffi

16π
p X

J≥2

FJ2ðsÞYJ2ðθ;ϕÞ; ð8Þ

with

YJmðθ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2J þ 1ÞðJ − jmjÞ!
4πðJ þ jmjÞ!

s

P
jmj
J ðcos θÞeimϕ; ð9Þ

where θ and ϕ are the scattering (and azimuthal) angles in the x-z plane. From these amplitudes we form the isospin
combinations that correspond to whether the pions are neutral or charged to giveMn;c

Jλ , respectively. Continuing these to the

unphysical region using the Lorentz invariants s, t relates these at s ¼ 0 to the polarizabilities, so that

Mn
þþðs; θ ¼ π=2;ϕ ¼ 0Þ ¼ e2

ffiffiffiffiffiffiffiffi

16π
p mπ

4α

�

sðα1 − β1Þπ0 þ
s2

12
ðα2 − β2Þπ0

�

;

Mn
þ−ðs; θ ¼ π=2;ϕ ¼ 0Þ ¼ e2

ffiffiffiffiffiffiffiffi

16π
p mπ

4α

�

−sðα1 þ β1Þπ0 −
s2

12
ðα2 þ β2Þπ0

�

;

Mc
þþðs; θ ¼ π=2;ϕ ¼ 0Þ ¼ e2

ffiffiffiffiffiffiffiffi

16π
p �

Bþþ þmπ

4α
½sðα1 − β1Þπþ þ s2

12
ðα2 − β2Þπþ �

�

;

Mc
þ−ðs; θ ¼ π=2;ϕ ¼ 0Þ ¼ e2

ffiffiffiffiffiffiffiffi

16π
p �

Bþ− −
mπ

4α
½sðα1 þ β1Þπþ þ s2

12
ðα2 þ β2Þπþ �

�

: ð10Þ

Using the dispersive contributions specified by the cross-channel exchanges from Eq. (5) to define reduced amplitudes

RI
JλðsÞ given in the Appendix, Eqs. (A1) and (A2), we can rewrite our amplitudes of Eqs. (2) and (4) to obtain the

polarizabilities. This has already been discussed in [21] considering twice or once subtracted dispersion relations, and in
[22] by solving the Roy-Steiner equations. However, here we only use once subtracted dispersion relations for S-waves and
unsubtracted ones for D-waves. As we will discuss later, this makes it possible to predict the polarizabilities with fewer
unknown constants, and provides a tighter connection between these and the two photon cross sections. One has

1

1
We note that in Ref. [21], the authors missed the dðIÞ term of ðα2 þ β2ÞIπþ;π0 in their Eq. (69), which corresponds to the first two terms

in our representation.
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ðα1 − β1Þπþ ¼ 4α

mπ

�

−

ffiffiffi

2

3

r

bI¼0 −

ffiffiffi

1

3

r

bI¼2

�

;

ðα2 − β2Þπþ ¼ 48α
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�
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ffiffiffi

2

3
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ffiffiffi

1

3
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ffiffiffi
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3
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00
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ffiffiffi

1

3
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00
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ffiffiffi
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1

3
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2

3
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�
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1
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dΩI¼2

00
ð0Þ

ds
−
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3
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3
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ffiffiffi

2
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: ð11Þ

Notice that for higher partial waves with J ≥ 4, the Born
terms are expected to be an adequate approximation and so
they make no contribution to the pion polarizabilities.
While polarizabilities encode the approach to the one pion
exchange Born amplitude for Compton scattering at

threshold, this does not mean it is independent of the
Born amplitude. This is because in some key channels it is
the modifications to the Born amplitude from the ππ final
state interaction that unitarity imposes which control the
low energy γγ → ππ process. These final state interactions

TABLE I. Polarizabilities predicted in models I–V defined in the text. The highlighted numbers are inputs specifying the particular

model in that column. The final column is for a χPTþ resonance model. The πþ results are from [8], while those for π0 are from [25]

and in square brackets from [26]. The units of dipole and quadrupole polarizabilities are in units of 10−4 fm3 and 10−4 fm5, respectively.
λ is the total helicity of the two photon system.

Polarizabilities λ ¼ 0 Model I Model II Model III Model IV Model V χPTþ resonance model

ðα1 − β1Þπþ 4.0� 1.2� 1.4 0.0 11.6 4.0 4.0 5.7� 1.0

ðα2 − β2Þπþ 15.7� 1.1 13.0� 1.1 20.9� 1.1 13.2� 3.4 18.1� 2.5 16.2[21.6]

ðα1 − β1Þπ0 −0.9� 0.2 −0.8� 0.1 −1.1� 0.2 −0.8� 0.2 −1.0� 0.2 −1.9� 0.2

ðα2 − β2Þπ0 20.6� 0.8 17.8� 0.8 26.0� 0.8 18.6� 2.4 22.4� 1.8 37.6� 3.3

λ ¼ 2

ðα1 þ β1Þπþ 0.26� 0.07 0.26� 0.07 0.26� 0.07 0.17� 0.51 0.42� 0.22 0.16[0.16]

ðα2 þ β2Þπþ −1.4� 0.5 −1.4� 0.5 −1.4� 0.5 −0.9� 3.5 −2.4� 1.5 −0.001

ðα1 þ β1Þπ0 0.60� 0.06 0.60� 0.06 0.60� 0.06 −0.04� 0.52 0.90� 0.17 1.1� 3.3

ðα2 þ β2Þπ0 −3.7� 0.4 −3.7� 0.4 −3.7� 0.4 0.4� 3.4 −5.5� 1.1 0.04
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are particularly important in the I ¼ 0 channel. These
appear in the reduced amplitudes RBI

Jλ
ðsÞ above and are

defined in the Appendix equation (A2).

III. PION POLARIZABILITIES

A. Pion polarizabilities from dispersion relations

All the Omnès functions of Eqs. (2) and (4) are fixed from
our previous analysis [14]. For left-hand cut contributions we
use the “single particle exchange” model of Sec. II B. This
should provide an adequate representation at low energies of
the effect of even multiparticle exchange, like 2π, 3π, etc. To
get an idea of the range of values for the polarizabilities we
make a series of assumptions, motivated by experimental and
theoretical results: these define models I–V.

(i) Model I is defined by setting ðα1 − β1Þπþ ¼
ð4.0� 1.2� 1.4Þ × 10−4 fm3, as given by the latest
experiment [12]. We then obtain all the amplitudes
and the pion polarizability.

(ii) Model II sets ðα1 − β1Þπþ ¼ 0.
(iii) Model III is defined by setting ðα1 − β1Þπþ ¼

ð11.6� 1.5� 3.0� 0.5Þ × 10−4 fm3 from [11].
This is in accord with the value of

13.0 × 10−4 fm3, as calculated by [16].
(iv) Models IV and V are defined by setting

ðα1 − β1Þπþ ¼ 4.0 × 10−4 fm3, but fixing the effec-
tive tensor exchange mass (MT) to be 0.8 and 3 GeV,
respectively, rather than 1.4 GeV as in models I–III.

The estimates of thepolarizability for eachof thesemodels are
shown in Table I. The cross sections for charged and neutral
dipion production from these models are shown in Fig. 2.
What these results teach is summarized here:
(i) The first thing to note from Fig. 2 is that the model

III input of ðα1 − β1Þπþ ¼ 11.6 × 10−4 fm3 of [11])

is excluded by the γγ → π0π0 data set of Crystal Ball
[24]. Thus we do not consider model III further.

(ii) Models I, II, IV, and V all essentially predict

ðα1 − β1Þπ0 ¼ ð0.9� 0.2Þ × 10−4 fm3. This is auto-
matically fixed by constraints of the Adler zero and
the input of ðα1 − β1Þπþ , see Eqs. (3) and (11).
Otherwise, it is model independent.

(iii) The relation between ðα1 − β1Þ for the π� and π0

makes it possible to constrain the charged pion

polarizability from γγ → π0π0 measurements and
vice versa. In fact since our once or unsubtracted
dispersion relations give a strong correlation be-
tween the two photon cross sections and all helicity-
zero polarizabilities, fixing one precisely is suffi-
cient to calculate all the others. The helicity-two
polarizabilities are fixed, as in Table I.

(iv) An attempt to reconcile the predictions in the
rightmost column of Table I from chiral perturbation
theory to Oðp6Þ with the data was carried out
by Pasquini et al. [17] a decade ago. This gave a
very wide range of values for the low energy γγ cross
section. This range is explored in more detail here.

(v) We find our prediction for ðα2 − β2Þπ0 ≃ 20 ×

10−4 fm5 is only half that predicted by the χPT
plus resonance model [25]. In contrast, we find
ðα2 þ β2Þπþ;π0 are somewhat larger than other mod-

els. The reason is that these are particularly sensitive
to LHC contributions from particle exchanges not
covered by ρ, ω, b1, h1, and a1—see how they
depend on variations in the mass of the effective
tensor exchange among 0.8, 1.4, and 3 GeV (models
IV, I, V). Moreover our Omnès function differs from
other models for the I ¼ 2 D-wave, as we use the
phase and they use the phase shift [21]. As discussed

FIG. 2. The fits to the γγ → ππ cross section of the models I–V defined in the text. The Mark II [23] πþπ− data are integrated over

j cos θj ≤ 0.6, while the Crystal Ball π0π0 results [24] are for j cos θj ≤ 0.8. Note that the scale of the cross sections on the left and right
differ by more than an order of magnitude.
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earlier [14], the phase is quite different from the

phase shift for isospin two D-waves.
(vi) We obtain ðα2 − β2Þπþ ¼ 15.7� 1.1 × 10−4 fm5 in

model I. This value is rather close to that in [22]

from their sum rule for the I ¼ 2 quadrupole polar-

izabilities deduced using the Roy-Steiner equations.

This supports model I.
(vii) We also note that in models II and III the helicity-

two polarizability does not change, as these depend

onD-waves and bI is the subtraction constant for the
S-wave.

B. Error correlations between polarizabilities

and γγ cross sections

Now let us give an estimate of the uncertainties by
investigating the relation between polarizabilities and the γγ
cross sections directly. The helicity-zero and/or -two ampli-
tudes of charged and neutral pion production are given as
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For γγ → πþπ−, because of the threshold factors, the LHCs
will contribute just a little to the charged pion polarizability
compared to the effect of the final state interaction that
modifies the Born terms (mainly S- andD2-waves) in the low

energy region. For γγ → π0π0, the S-wave dominates at low
energy and the contribution of higher partial waves is small.
The details are shown in Fig. 3.

As seen in Eq. (11), R0

00
and R2

00
are the dominant part of

the polarizabilities ðα2 − β2Þπþ;π0 and R0

22
and R2

22
dominate

for ðα2 þ β2Þπþ;π0. That is to say, we can ignore the

derivative part of the Omnès functions. Keeping these facts
in mind and noting that when s is small the values of
Omnès functions, as defined in Eq. (1), are very close to
one, these can be set to unity in Eq. (12) to make the error

FIG. 3. The comparison of the Born terms, full amplitudes of γγ → πþπ−, and the contribution of each partial wave to γγ → π0π0. The
data are as shown in Fig. 2 The solid black line is the full amplitude from the amplitude analysis [14]. Note the differing scales of the
cross sections on the left and right. Since the maximum value of j cos θj ¼ z ¼ 0.8 for the neutral pion data, the J ≤ 2 partial wave

contributions come not only from jSj2 and jDλj2 (labeled for simplicity without their modulus squared), but also the S-D0 interference,
which is negative.
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estimate. Of course, we use the full Omnès functions in the

RI
Jλ functions in making the predictions in Table I.

Unfortunately, the measurement of the two photon pro-
duction ofmesons does not cover the full angular range. This
is limited to j cos θj ≤ z. In eþe− colliders, z is typically

0.6–0.7 for charged pions and 0.8 for π0π0. The GlueX

experiment will produce good angular coverage for 40° <
θ < 140° according to [13], so z ¼ 0.77. Consequently, the
differential cross sections are integrated up to cos θ ¼ z to
give σc;nðs; zÞwith uncertaintiesΔσnc;nðs; zÞ.We can readily
estimate the relative errors between polarizability and cross
sections from Eq. (11) to be

FIG. 4. The relation between the relative errors of cross section and polarizability. The C functions are defined in Eq. (13). The solid
lines are for a γγ cross section measured up to j cos θj ¼ z with z ¼ 0.6, the dotted lines with z ¼ 0.8, and the dashed lines with z ¼ 1.
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where the C functions are given by
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The equations in (14) involve the integrated Born cross
section, σBðs; zÞ, which, with ρ ¼ ρðsÞ of Eq. (7), is given by

σcBðs; zÞ ¼
2πα2ρ

s

�

zþ ð1− ρ2Þ2z
1− ρ2z2

−
ð1− ρ4Þ

2ρ
ln

�
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1− ρz

�	

:

ð15Þ

A general estimate of the error correlations for each
polarizability in Table I is shown in Fig. 4. We see that if we
want to fix the uncertainty of the polarizability at 100
percent, the accuracy of the γγ → ππ cross section at

ffiffiffi

s
p

of
450MeV (when z ¼ 0.6 for charged pions, andwith z ¼ 0.8
for neutral pions) must be measured to the precision listed in
Table II. The values at other energies can be read off the plots
in Fig. 4. Among these only the value of Cðα2−β2Þπ0 is large,

we therefore suggest that experiment measures the γγ →

π0π0 cross section to fix ðα2 − β2Þπ0 . The values of the C
function of helicity-two polarizabilities, ðα1 þ β1Þπþ;π0 and
ðα2 þ β2Þπþ;π0 , have larger values for the neutral pion.

TABLE II. To determine each polarizability listed with an
uncertainty of 100%, the corresponding (charged or neutral pion)
cross section for γγ → ππ has to be measured at 450 MeV (as an
example) to the accuracy tabulated for z ¼ 0.77 for charged and
neutral pions, where GlueX is expected to have good angular
coverage [13]. At other energies the percentage accuracies can be
read off from the graphs in Fig. 4.

Polarizability

For an
uncertainty

of

Accuracy required
of γγ → ππ cross
section at 450 MeV

Uncertainty
required in the

integrated
cross
section

ðα1 − β1Þπþ 100% 10% 20 nb

ðα2 − β2Þπþ 100% 17% 34 nb

ðα1 − β1Þπ0 100% 13% 1.2 nb

ðα2 − β2Þπ0 100% 132% 12 nb

ðα1 þ β1Þπþ 100% 1% 2 nb

ðα2 þ β2Þπþ 100% 1% 2 nb

ðα1 þ β1Þπ0 100% 1% 0.08 nb

ðα2 þ β2Þπ0 100% 1% 0.07 nb
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Nevertheless they are especially small. The reason is that
they are related toD-waves and in the low energy regionD-
waves are strongly suppressed by the threshold factors

sð2−λ=2Þðs − 4m2
πÞ, Eq. (4), thus they hardly contribute to

the cross section. We also find that the C functions increase
as the energy goes higher, this is an important observation as
it shows an amplitude analysis at a little higher energy, away
from threshold, is necessary to determine the polarizabil-
ities. We would suggest that experiments measure the γγ

cross sections in the energy range of
ffiffiffi

s
p

∼ 350 and
600 MeV. Too low the cross section is not sensitive to the
polarizability. Too high then our analysis usingEq. (13) is no
longer valid, as the Omnès functions change much more,
making the correlation between polarizability and cross-
section uncertainties more complicated.

IV. CONCLUSION

In this paper we give our estimate of pion polarizabilities
based on our earlier amplitude analysis [14]. Our use of once
subtracted dispersion relations for the S-waves and unsub-
tracted ones for all other waves provides a tighter constraint
between the two photon cross sections in the low energy
region. This correlates the charged and neutral pion cross
sections and the helicity-zero charged and neutral pion
polarizabilities. Confirming any of these quantities with
precision fixes the others. The polarizabilities for a number
of differing inputs are listed in Table I as models
I–V. The correlation of relative errors between pion polar-
izability and two photon cross section are shown in Fig. 4

and summarized in Table II at
ffiffiffi

s
p

of 450MeV.Model I is the
most likely based on the latest measured value of ðα1 −
β1Þπþ from COMPASS [12]. The helicity-zero polarizabil-
ities are rather stable as known final state interactions
modifying the Born terms make the dominant contribution.
They are the least sensitive to chiral/resonance models.
Consequently, one of the first γγmeasurements should be for
charged pion production to confirm theCOMPASSvalue for
ðα1 − β1Þπþ . This should take advantage, for instance, of the
good angular coverage of GlueX [13]. Then the πþπ− cross
section must be measured to better than �2.2 nb to fix this
polarizability to an accuracy of 10%.With this value known,

then ðα1 − β1Þπ0 ¼ ð0.9� 0.2Þ × 10−4 fm3 is fixed in a
model independent way. Only experimental input on ðα1 −
β1Þπþ and the position of the Adler zero will constrain it.

Indeed, we find that the helicity-zero polarizability is much
more sensitive to the γγ cross section than those of helicity
two,making themeasier tomeasure in experiment and easier
to connect using dispersion relations.
The largest uncertainties come from ill-determined left-

hand cut contributions to the dispersion relations for the γγ
partial waves. These are reflected in what we call the C
functions, Eq. (14), which enter into the correlation between
polarizabilities and two photon cross sections. These are
very small around threshold, but increase when the energy

goes higher. As a consequence we stress that the best region
to measure the γγ cross sections is at the intermediate energy

region of
ffiffiffi

s
p

from 350 to 600 MeV. Of the helicity-two
quantities we find that ðα2 − β2Þπ0 is the easiest polar-

izability to fix by measuring the γγ → π0π0 cross section.
What is more, it is the least sensitive to variations of the left-
hand cut, thus easier for theory to check. Future experiments
at COMPASS at CERN [27], with GlueX at Jefferson Lab
[13] and BESIII at IHEP, Beijing [28] are the most suitable
for studying pion polarizabilities.
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APPENDIX: DEFINITION OF REDUCED

AMPLITUDES

It is convenient to determine the following functions:
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Note that we have divided out the threshold behavior factors s2, snðs − 4m2
πÞJ=2 inRI

JλðsÞ. TheseR0I
JλðsÞ functions describe

the amplitudes well near threshold. As an estimate we use single resonance exchange, shown in Eq. (5), to simulate the left-
hand cuts and calculate the amplitudes in the low energy region.
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