000826223 001__ 826223
000826223 005__ 20240619091225.0
000826223 0247_ $$2doi$$a10.1039/C6RA20207A
000826223 0247_ $$2Handle$$a2128/13450
000826223 0247_ $$2WOS$$aWOS:000393741900023
000826223 0247_ $$2altmetric$$aaltmetric:20458743
000826223 037__ $$aFZJ-2017-00469
000826223 082__ $$a540
000826223 1001_ $$0P:(DE-Juel1)161234$$aSeyock, Silke$$b0$$ufzj
000826223 245__ $$aInterfacing neurons on carbon nanotubes covered with diamond
000826223 260__ $$aLondon$$bRSC Publishing$$c2017
000826223 3367_ $$2DRIVER$$aarticle
000826223 3367_ $$2DataCite$$aOutput Types/Journal article
000826223 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484577260_30761
000826223 3367_ $$2BibTeX$$aARTICLE
000826223 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826223 3367_ $$00$$2EndNote$$aJournal Article
000826223 520__ $$aA recently discovered material, carbon nanotubes covered with diamond (DCNTs) was tested for its suitability in bioelectronics applications. Diamond shows advantages for bioelectronics applications (wide electro chemical window and bioinertness). This study investigates the effect of electrode surface shape (flat or three dimensional) on cell growth and behavior. For comparison, flat nanocrystalline diamond substrates were used. Primary embryonic neurons were grown on top of the structures and neither incorporated the structures nor did they grow in between the single structures. The interface was closely examined using focused ion beam (FIB) and scanning electron microscopy. Of special interest was the interface between cell and substrate. 5% to 25% of the cell membrane adhered to the substrate, which fits the theoretical estimated value. While investigating the conformity of the neurons, it could be observed that the cell membrane attaches to different heights of the tips of the 3D structure. However, the aspect ratio of the structures had no effect on the cell viability. These results let us assume that not more than 25% of cell attachment is needed for the survival of a functional neuronal cell.
000826223 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000826223 588__ $$aDataset connected to CrossRef
000826223 7001_ $$0P:(DE-Juel1)128705$$aMaybeck, Vanessa$$b1$$ufzj
000826223 7001_ $$0P:(DE-HGF)0$$aScorsone, Emmanuel$$b2
000826223 7001_ $$0P:(DE-HGF)0$$aRousseau, Lionel$$b3
000826223 7001_ $$0P:(DE-HGF)0$$aHébert, Clément$$b4
000826223 7001_ $$0P:(DE-HGF)0$$aLissorgues, Gaëlle$$b5
000826223 7001_ $$0P:(DE-HGF)0$$aBergonzo, Philippe$$b6
000826223 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b7$$eCorresponding author$$ufzj
000826223 773__ $$0PERI:(DE-600)2623224-8$$a10.1039/C6RA20207A$$gVol. 7, no. 1, p. 153 - 160$$n1$$p153 - 160$$tRSC Advances$$v7$$x2046-2069$$y2017
000826223 8564_ $$uhttps://juser.fz-juelich.de/record/826223/files/c6ra20207a.pdf$$yOpenAccess
000826223 8564_ $$uhttps://juser.fz-juelich.de/record/826223/files/c6ra20207a.gif?subformat=icon$$xicon$$yOpenAccess
000826223 8564_ $$uhttps://juser.fz-juelich.de/record/826223/files/c6ra20207a.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000826223 8564_ $$uhttps://juser.fz-juelich.de/record/826223/files/c6ra20207a.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000826223 8564_ $$uhttps://juser.fz-juelich.de/record/826223/files/c6ra20207a.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000826223 8564_ $$uhttps://juser.fz-juelich.de/record/826223/files/c6ra20207a.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000826223 909CO $$ooai:juser.fz-juelich.de:826223$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000826223 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161234$$aForschungszentrum Jülich$$b0$$kFZJ
000826223 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128705$$aForschungszentrum Jülich$$b1$$kFZJ
000826223 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b7$$kFZJ
000826223 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000826223 9141_ $$y2017
000826223 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826223 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRSC ADV : 2015
000826223 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000826223 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826223 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826223 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000826223 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000826223 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826223 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000826223 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826223 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826223 920__ $$lyes
000826223 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000826223 9801_ $$aFullTexts
000826223 980__ $$ajournal
000826223 980__ $$aVDB
000826223 980__ $$aUNRESTRICTED
000826223 980__ $$aI:(DE-Juel1)ICS-8-20110106
000826223 981__ $$aI:(DE-Juel1)IBI-3-20200312