000826225 001__ 826225
000826225 005__ 20210129225546.0
000826225 0247_ $$2doi$$a10.1063/1.4972996
000826225 0247_ $$2Handle$$a2128/13449
000826225 0247_ $$2WOS$$aWOS:000391991100010
000826225 037__ $$aFZJ-2017-00471
000826225 082__ $$a620
000826225 1001_ $$0P:(DE-HGF)0$$aSchraknepper, H.$$b0
000826225 245__ $$aPulsed laser deposition of SrRuO 3 thin-films: The role of the pulse repetition rate
000826225 260__ $$aMelville, NY$$bAIP Publ.$$c2016
000826225 3367_ $$2DRIVER$$aarticle
000826225 3367_ $$2DataCite$$aOutput Types/Journal article
000826225 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484577036_30755
000826225 3367_ $$2BibTeX$$aARTICLE
000826225 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826225 3367_ $$00$$2EndNote$$aJournal Article
000826225 520__ $$aSrRuO3 thin-films were deposited with different pulse repetition rates, fdep, epitaxially on vicinal SrTiO3 substrates by means of pulsed laser deposition. The measurement of several physical properties (e.g., composition by means of X-ray photoelectron spectroscopy, the out-of-plane lattice parameter, the electric conductivity, and the Curie temperature) consistently reveals that an increase in laser repetition rate results in an increase in ruthenium deficiency in the films. By the same token, it is shown that when using low repetition rates, approaching a nearly stoichiometric cation ratio in SrRuO3 becomes feasible. Based on these results, we propose a mechanism to explain the widely observed Ru deficiency of SrRuO3 thin-films. Our findings demand these theoretical considerations to be based on kinetic rather than widely employed thermodynamic arguments.
000826225 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000826225 588__ $$aDataset connected to CrossRef
000826225 7001_ $$0P:(DE-Juel1)159254$$aBäumer, C.$$b1
000826225 7001_ $$0P:(DE-Juel1)130677$$aGunkel, F.$$b2
000826225 7001_ $$0P:(DE-Juel1)130620$$aDittmann, R.$$b3
000826225 7001_ $$0P:(DE-HGF)0$$aDe Souza, R. A.$$b4
000826225 773__ $$0PERI:(DE-600)2722985-3$$a10.1063/1.4972996$$gVol. 4, no. 12, p. 126109 -$$n12$$p126109 -$$tAPL materials$$v4$$x2166-532X$$y2016
000826225 8564_ $$uhttps://juser.fz-juelich.de/record/826225/files/1.4972996.pdf$$yOpenAccess
000826225 8564_ $$uhttps://juser.fz-juelich.de/record/826225/files/1.4972996.gif?subformat=icon$$xicon$$yOpenAccess
000826225 8564_ $$uhttps://juser.fz-juelich.de/record/826225/files/1.4972996.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000826225 8564_ $$uhttps://juser.fz-juelich.de/record/826225/files/1.4972996.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000826225 8564_ $$uhttps://juser.fz-juelich.de/record/826225/files/1.4972996.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000826225 8564_ $$uhttps://juser.fz-juelich.de/record/826225/files/1.4972996.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000826225 909CO $$ooai:juser.fz-juelich.de:826225$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000826225 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159254$$aForschungszentrum Jülich$$b1$$kFZJ
000826225 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b2$$kFZJ
000826225 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b3$$kFZJ
000826225 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000826225 9141_ $$y2016
000826225 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826225 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000826225 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000826225 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPL MATER : 2015
000826225 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000826225 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000826225 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826225 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826225 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000826225 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000826225 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826225 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826225 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826225 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000826225 980__ $$ajournal
000826225 980__ $$aVDB
000826225 980__ $$aUNRESTRICTED
000826225 980__ $$aI:(DE-Juel1)PGI-7-20110106
000826225 9801_ $$aFullTexts