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Abstract

Next-generation sequencing has triggered an explosion of available genomic and transcriptomic resources in the plant

sciences. Although genome and transcriptome sequencing has become orders of magnitudes cheaper andmore efficient,

often the functional annotation process is lagging behind. This might be hampered by the lack of a comprehensive enumer-

ation of simple-to-use tools available to the plant researcher. In this comprehensive review, we present (i) typical ontologies

to be used in the plant sciences, (ii) useful databases and resources used for functional annotation, (iii) what to expect from

an annotated plant genome, (iv) an automated annotation pipeline and (v) a recipe and reference chart outlining typical

steps used to annotate plant genomes/transcriptomes using publicly available resources.
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Introduction

Next-generation sequencing has triggered an explosion of avail-

able genomic and transcriptomic resources in the plant sciences

[1]. Since the genome sequence of the model plant Arabidopsis

thaliana was published in 2000 [2], around 180 plant genome se-

quences have been published (http://www.plabipd.de/portal/se

quence-timeline, https://en.wikipedia.org/wiki/List_of_sequenc

ed_plant_genomes). This number is greatly enhanced by includ-

ing plant transcriptome assemblies. As of August 2016, the tran-

scriptome shotgun assembly database of the National Center

for Biotechnology Information (NCBI) lists over 450 plant assem-

blies (https://www.ncbi.nlm.nih.gov/Traces/wgs/?view¼TSA),

whereas the plant 1KP project alone (onekp.com) includes

>1300 plant transcriptomes. This is further complemented by

countless plant transcriptomes found in Supplemental

Materials. This remarkable surge is a testament to the genomics

revolution that has provided us with the tools to quickly se-

quence whole transcriptomes on a relatively modest budget,

which typically can yield sufficient data for a working quality

transcriptomic inventory (‘the transcriptome’).

Generating an assembly for a species is merely the first step

in the elucidation of the genome. Extensive processing and ana-

lysis is necessary before the resource will yield scientific in-

sights. In the case of genome assemblies, a process called

structural annotation is necessary. This process detects genes

including their exon/intron structures within a given assembly.

Although this can rely on extensive ‘extrinsic evidence’ in the

form of RNA sequence (RNASeq) [3], this is often complemented

by sophisticated statistical models of gene structures to find

exon/intron structures in what is termed ab initio discovery.

This process has been covered in detail, and readers are referred

to [4]. Current popular tools to structurally annotate a genome

include the automated pipelines MAKER-P specifically de-

veloped for plants [5] and the generalist BRAKER1 [6].

Assembling RNASeq data to produce high-quality transcrip-

tome assemblies as a shortcut to a ‘functional genome’ [7] is still

not a trivial task, despite these data sets being typically smaller
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and consisting uniquely of gene rich data. Popular transcrip-

tome assembly tools such as TRINITY [8] require significant op-

timization to produce an assembly of reasonable quality. For

recipes and cookbooks in the plant field one can refer to [9–11].

Once the gene structures have been detected, the necessary

next step is to ascribe biological function to the genes in a pro-

cess known as functional annotation. Surprisingly, performing

this task to a degree of accuracy remains challenging, despite

the extensive accrual of knowledge about gene function in

model and crop species. Indeed, there is still a large percentage

of genes, many of which can be found across multiple species,

whose function has not been ascertained.

Within the plant community, A. thaliana remains the best

annotated plant largely because of the tremendous effort of The

Arabidopsis Information Resource (TAIR), which integrates

community-based curations together with annotations from lit-

erature evidence. Over 2800 experimentally supported annota-

tions have been included within the past 2 years alone [12]. This

wealth of data has been adopted and further augmented by

AraPort [13], an open-source resource, which encourages the

community to contribute not only data modules but visualiza-

tion tools and apps. Despite these extensive resources,

published data [14] indicate that still only about 77% of the pro-

tein-coding sequences could be assigned any kind of structured

annotation. This figure is in agreement with data from the

PLAZA database, an online platform that has processed the an-

notations from several plant species into a uniform format [15].

Controlled terms and vocabularies for plant
functional annotations

Homology-based functional annotation is the transfer of exist-

ing knowledge about a gene sequence to another gene sequence

within the same species or to another species. This process es-

sentially depends on the existing knowledge about a gene func-

tion being transferable to genes of a similar sequence and

assumes that this similarity reflects functional homology.

Although an experimentalist working with a non-model species

may likely be content with an annotation such as ‘quite similar

to an Arabidopsis thaliana malic enzyme’, this annotation bears

several difficulties for a sustainable annotation framework.

This also hampers structured analysis of genome-wide data to

answer questions like, ‘how many genes are involved in photo-

synthesis or glycolysis?’. This problem can largely be alleviated

by using controlled vocabularies and functional ontologies [16]

to provide a consistent description of gene products across dif-

ferent species.

The Gene Ontology ontology

The most widely used functional annotation is ‘Gene Ontology’

(GO) that provides defined ‘GO terms’ to enable gene products

to be described by three separate domains: ‘Biological Process’,

which describes the gene in terms of a recognized series of

events or molecular functions, ‘Cellular Component’ describing

the location of a protein (or rather biomolecule) at a cellular

and/or macromolecular level and ‘Molecular Function’ describ-

ing the jobs or abilities that a gene product has on the molecular

level. Besides GO terms, each GO annotation contains an ‘evi-

dence code’, which provides information on how a GO term was

applied to a gene. Evidence codes indicate whether the annota-

tion is based on experimental evidence, computational analysis,

author statements or curatorial statements, all of which are

manually curated. GO annotations also contain evidence codes,

which are used to indicate assignment by automatic/computa-

tional methods. This has the advantage that annotations based

on experimental data can be treated with much higher

confidence than automatic annotations of related proteins.

In addition, by qualifying where such an annotation came from

it is easier to check the respective annotation. In this respect,

curated GO resources such as the one for A. thaliana represent

an invaluable resource.

The GO ontology is structured as a directed acyclical graph

making it possible to infer more general terms from a specific

term. This additionally allows grouping data, e.g. our malic

enzyme might be annotated with the GO term ‘GO:0009763’

‘NAD-malic enzyme C4 photosynthesis’ from which one could

immediately deduce using, e.g., the Amigo browser [17] that the

terms ‘GO:0015979’ ‘photosynthesis’ and ‘GO:0015977’ ‘carbon

fixation’ also apply.

The Kyoto Encyclopedia of Genes and Genomes ontology

Another widely used resource is the Kyoto Encyclopedia of

Genes and Genomes (KEGG http://www.kegg.jp/). This features

a number of databases that aim to link genomic- and molecu-

lar-level information to higher-level functions of the cell, organ-

ism and the ecosystem. Annotation with KEGG is based on

associating molecular function with orthologous groups, which

are defined based on clustering of genes from completed gen-

omes (currently, >4000 genomes), using the KEGG’s internal

‘KEGG Orthology and Links Annotation’ (KOALA) program. The

resulting information is stored in the ‘KEGG Orthology’ (KO)

database, and assignment of KO entry identifier (also called K

numbers) provides the gene annotation. KEGG aims to include

reference to primary literature for each KO entry (76% of around

19 000 KO entries contains this as of September 2015) [18].

CYC and other metabolic resources

In the case of enzymatic reactions, there is also the CYC net-

work, whose plant section is under the Plant Metabolic network

(http://www.plantcyc.org) umbrella [19]. This is mainly used to

describe enzymatic functions, and while it enables one to build

reaction networks [20], it does not cover additional functional

terms. The plant Reactome is a database of plant metabolic and

regulatory pathways which have been curated for the reference

species rice and applied to 58 other plant species [21]. Finally,

the Enzyme Commission numbers [22] (http://www.chem.qmul.

ac.uk/iubmb/enzyme) describe reactions and classify enzymes,

which are also referenced by KEGG, CYC and Reactome.

Although CYC uses citations to the primary literature exten-

sively, the enzymes within CYC are not formally linked to anno-

tations via evidence codes.

The MapMan BIN ontology

One additional ontology resource that is specifically plant

focused is the MapMan BIN ontology. This was originally

devised to visualize omics data on plant pathways [23] but has

grown since and currently comprises around 2000 ontological

terms. The MapMan ontology is modeled in a hierarchical tree

structure with higher-level categories based on biological pro-

cess and leaf categories containing detailed function. The struc-

ture was manually defined by experts in the respective fields,

and changes are applied periodically based on primary litera-

ture. Although MapMan endeavors to assign ‘evidence’ to the

BINs (http://mapman.gabipd.org/web/guest/mapcave), these are

currently updated as new releases are published. As this
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ontology is strictly plant-specific, it lacks non-plant terms fea-

tured by, e.g., GO, KO and the CYC databases.

Common misconceptions

Functional annotation usually depends on the transfer of func-

tional knowledge from one gene to another. This assumes that

the initial functional annotation is not only correct but also of a

‘robust nature’ to allow transfer. There are many pitfalls, which

can occur during this transfer process, and which may, ultim-

ately, lead to either incomplete or missannotation of genes.

The ‘annotatable’ gene space in plants

The number of annotated genes in an assembly is a frequently

used assessment in published data [24]. Before one can assess

the results of this, one needs to first know how many genes can

be annotated. This question is far from easy to answer, as it

varies not only between species but also varies depending on

what is considered as a ‘high confidence’ annotation. The use of

the ontologies mentioned previously highlights that the func-

tion of many genes remain ‘dark matter’. The data shown in

Figure 1 give an upper bound based on the best annotated A.

thaliana genome. When one considers annotations pertaining to

a molecular function or biological process separately, slightly

>50% of the A. thaliana genes can be assigned a GO function

(Figure 1A). Even when asking whether a gene has a molecular

function or a biological process annotated to it, in our test data,

the number reached 64% (Figure 1B). The numbers are naturally

lower when one only considers experimental evidence data and

not electronic annotations, which are often based on homology

transfer. Only in the case of ‘cellular component’ are these

numbers much higher (Figure 1A), as the subcellular localiza-

tion can usually be predicted easily as shown in the section

‘Subcellular localization’ below.

Put in other words, this means that obtaining functional an-

notations (based on Molecular function and Biological process,

Figure 1B) for more than two-thirds of the plant protein-coding

genes analyzed is relatively unlikely, and a number much lower

than this could suggest an incomplete genome or

transcriptome.

Annotation quality can vary

Even in cases when genes have been successfully annotated,

the question about the quality of the annotations needs to be

addressed. One simple pitfall is to take sequence similarity to

annotated proteins at face value. Indeed, any functional anno-

tation derived by simple sequence similarity transfer should be

scrutinized carefully before embarking on a particular hypoth-

esis about this particular protein. Given that proteins generally

consist of one or more distinct domains embedded in generic

regions, annotations that only look at sequence similarity, but

Figure 1. Overview of the number of annotated genes for the genome of the model plant A. thaliana based on analysis of GO terms.

The GoSlim annotations were downloaded from the TAIR Web site (ftp://ftp.arabidopsis.org/Ontologies/Gene_Ontology/ATH_GO_GOSLIM.txt—downloaded July 2016).

For each of the three main GO domains, the respective annotations were categorized according to the evidence code. The ‘Experimental’ category includes genes anno-

tated with evidence codes IDA (inferred from direct assay), IMP (inferred from mutant phenotype), IGI (inferred from genetic interaction), IPI (inferred from physical

interaction) or IEP (inferred from expression profile). ‘Curated’ includes those which had evidence codes IC (Inferred by Curator), NAS (Non-traceable Author

Statement) and TAS (Traceable Author Statement) but lacking any annotation covered by the ‘Experimental’ category. ‘Electronic’ includes genes annotated with evi-

dence codes ISS (Inferred from Sequence or Structural Similarity), ISO (Inferred from Sequence Orthology), ISM (Inferred from Sequence Model), IBA (Inferred from

Biological Aspect of Ancestor), RCA (Inferred from Reviewed Computational Analysis) or IEA (Inferred from Electronic Annotation), but lacking any annotation from the

‘Experimental’ or ‘Curated’ categories. (A) The three aspects are shown separately. (B) The best annotation from multiple domains is shown, with the combination of

Molecular Function and Biological Process on the left, and all three domains combined on the right.
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do not take into account that certain domains are necessary to

exert a function, might lead to an incorrect annotation.

Absence of annotation does not mean absence

of function

Furthermore, absence of a specific annotated gene in a plant

genome/transcriptome does not necessarily mean that the

plant cannot perform a particular function. Functional annota-

tion is highly dependent on complete gene models, so in cases

of partial or incomplete gene models, as is frequently seen with

transcriptome assemblies, the tools used might not be sensitive

enough to ascribe (the correct) function on a partially assembled

gene. Thus, caution needs to be exercised when posing hypoth-

eses based on gene or even pathway loss. Such scenarios need

to be carefully validated using manual approaches. A first step

would be to analyze the genome/transcriptome specifically for

this function by using, e.g., BLAST [25] or searching for a neces-

sary domain using, e.g., HMMER3 [26] using the resources listed

in Table 1. In the case of no good candidates, more sophisticated

and even experimental methods would need to be used to dem-

onstrate the absence of a gene function beyond reasonable

doubt.

In conclusion, one should keep in mind that functional an-

notations should be treated with care and taken as working

hypotheses that might or might not need to be verified by biolo-

gical experimentation.

Functional annotations using generic tools and
ad hoc pipelines

Given the current levels of plant genome annotation, it is per-

haps unsurprising that frequently, the sole annotation process

used is based on sequence similarity to the well-annotated

plant A. thaliana. Indeed, often a simple BLAST search is per-

formed using the genome/transcriptome as a query and the A.

thaliana proteome as a subject. This is because of the well-

maintained and annotated A. thaliana genome. In addition to A.

thaliana, a selection of plant protein reference files can be ob-

tained from Phytozome [27] and/or Ensembl Plants [28], with

manually curated data sets for all species available from

UniProtKB/Swiss-Prot [29].

Many functional annotation tools require that the input data

are protein sequences, and some tools, which can accept either

nucleotide or protein sequence, show superior results when

protein sequences are submitted. Thus, extracting high-quality

protein sequences is often the first step in functional

annotation. The genome structural annotation pipeline from

AUGUSTUS/BRAKER1 [3] provides auxiliary scripts (http://augus

tus.gobics.de/binaries/scripts/), which will conveniently out-

put the protein sequences after genome annotation into a

FASTA file.

Finding coding regions in transcriptome assemblies

De novo transcriptome assemblies, however, pose additional

challenges, as coding sequences need to be identified and

frameshift mutations corrected before protein conversion.

ESTScan [30, 31], a program which can detect coding sequences

in DNA, has been developed to perform this task but needs to be

trained with examples before it is used on a specific data set.

This program exploits bias in nucleotide usage found in coding

sequences relative to noncoding sequences. Other heuristics

such as identifying the longest open reading frame (ORF) or by

searching for frames that code for functional domains using

TransDecoder (https://github.com/TransDecoder) [32] present

alternative approaches. FrameDP [33] and GenemarkS-T [34]

perform a similar function, but use sophisticated methods,

which remove the need for the training steps. FrameDP was de-

veloped to discover coding sequences in transcripts or tran-

script fragments, such as ESTs and is part of the TRAPID [35]

integrated tool (discussed further below). GenmarkS-T provides

an algorithm, which is somewhat robust against assembly

errors, and has been shown to compare favorably with other

existing tools. Despite showing superior performance when

tested by the authors against Transdecoder and ESTScan, the

authors noted problems arising when RNASeq-based assem-

blies gave rise to the transcript models. This is because the

underlying transcript models contained multiple errors leading

to concomitant problems in coding region finding [34].

Sequencing errors carried over from the assembly to the

annotation process might create artificial amino acid mutations

or insert stop codons in ORFs, shortening existing or creating

non-expressed peptides. Proteomics experiments are vital in ex-

perimentally validating gene models originating from

Table 1. Available resources for protein family- or domain-based functional identifications

Resource Version Families Web address Comments

PFAM 30.0 16 306 http://pfam.xfam.org/

TIGRFAM 15.0 4488 http://www.jcvi.org/cgi-bin/

tigrfams/index.cgi

PANTHER 11.0 13 096 http://pantherdb.org

SMART 7.1 1312 http://smart.embl-heidelberg.de/ License necessary

EggNOG 4.5 190 648 (37 127 plants) http://eggnogdb.embl.de/#/app/home

INTERPROSCAN 58.0 >40 000 integrated

entries

https://www.ebi.ac.uk/

interpro/search/sequence-search

Meta engine including all other

resources except EggNOG but not

necessarily the most recent

version at all times

CDD 3.15 52 411 (11 474

from CDD curation)

http://www.ncbi.nlm.nih.gov/cdd/ Uses RPS-BLAST and includes

partly older versions of PFAM,

SMART and TIGRFAM
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transcriptome assemblies by comparing the expressed/meas-

ured peptides with the in silico database, as described in [36, 37].

However, functional annotation can frequently deal with an in-

accurate ORF as long as most of the true coding region is re-

tained. This is because similarities can still be identified based

on slightly truncated regions.

Annotation based on profile hidden Markov models

Tools that specialize in identifying domains within a sequence

have advantages over simple similarity comparisons, as domain

sequences typically are highly conserved between genes.

Domains are frequently represented as profile hidden Markov

models (HMMs), which are deduced from multiple sequence

alignments stemming from several species, thus capturing typ-

ical sequence diversity at individual residues. This provides a

more sensitive way to approach the sequence annotation prob-

lem. Table 1 provides a list of the main tools, which use protein

family models often in the form of profile HMMs. PFAM [38] is

likely the best known resource in this area and can currently

identify >16 000 families. TIGRFAM [39] is a manually curated

resource, which provides HMMs for full-length proteins and

shorter regions. PANTHER’s [40] distinguishing feature is that it

splits families into subfamilies allowing for a fine-grained anno-

tation. SMART focuses on regulatory domains, which are often

more difficult to tackle [41]. Finally, the EggNOG database [42]

provides access to precomputed orthologous groups including

plant-specific ones, along with functional annotations.

Even though these resources do not necessarily attribute a

specific function to a protein, they do provide valuable evidence

or hints toward the function of the protein. In addition to these

standalone resources, HMMs used by many of these tools can

be downloaded (in some cases, after having applied for a li-

cense) and used with the HMMER software suite [26].

The integrated InterProScan resource

Many of the protein family databases mentioned in the previous

section contain overlapping information (e.g. the NAD-binding

domain of a malic enzyme would be identified both by the

PFAM HMM PF03949 and the SMART HMM SM00919). Thus, it is

often beneficial to use InterProScan [43], as this platform brings

such ‘redundant’ information from the different protein fami-

lies under one common umbrella (for the malic enzyme NAD-

binding domain regardless of whether it was identified via

SMART, PFAM or both, it would assign the InterPro Identifier

IPR012302 ‘Malic enzyme, NAD-binding’). InterProScan addition-

ally can assign GO terms by mapping from InterPro identifiers

to GO term(s) using a cross-mapper called Interpro2GO [44].

Even though InterProScan does not always support the latest

version of all the databases, a single tool that offers a diverse

range of databases is of great benefit to users. A notable non-

HMM-based reference database offered by InterProScan is the

Conserved Domain Database (CDD) [45], which like PFAM com-

prises protein domains, but also features full length protein

alignments. CDD relies on RPS-BLAST and, thus, ultimately on

position-specific scoring matrices [46] to identify sequence

similarity. From a user’s perspective, it is interesting to note

that CDD also incorporates data from PFAM, TIGRFAM and

SMART offering another tool that incorporates several sources

such as InterProScan. CDD offers the advantage of a simpler

setup scenario than InterProScan, as it is based on RPS-BLAST.

Using genome-scale orthology finding

To increase or improve functional annotations, genome-scale

draft-quality orthology detection is frequently incorporated.

This also helps in exploring protein family relationships and

comparative genomic approaches. In the simplest case, this

could be a reciprocal best BLAST hit, which offers a quick and

easy way to obtain a one-to-one relationship table. Tools such

as Inparanoid [47], Orthofinder [48] and OrthoMCL [49] use

BLAST and clustering algorithms in a convenient pipeline. Each

offers different benefits, and the performance of several tools

has recently been compared by Altenhoff et al. [50]. However, it

should be noted that incomplete transcriptomes/genomes can

lead to misdetection of orthologs, as the proper ortholog might

be missing in the incomplete transcriptome/genome. Also, es-

pecially for reconstructed transcriptomes, it is not possible to

generate full-length sequences for all contigs. This leads to add-

itional decreases in ortholog detection accuracy, which need to

be accounted for.

In the case of closely related species, one can refine orthol-

ogy prediction further if full-genome information is available by

making use of synteny, i.e. that gene order remains conserved

across species [51]. The online tool CoGe [52] offers an auto-

mated pipeline to perform this task. However, this is a special-

ized step that lies downstream of typical functional annotation.

Adding information

In addition to gene function (captured by ‘molecular function’

or ‘biological process’ in the GO ontology), it can be useful to

gain an insight into the topological considerations for plant pro-

teins as well as their subcellular localization and potential post-

transcriptional modification.

Transmembrane domains

One approach for adding protein topology is predicting trans-

membrane domains based on the protein sequence. TMHMM

[53] offers a simple Web-based solution for alpha helix detection

and can also be downloaded as a standalone tool for academic

use. The free tool TOPCONS [54], which is actively being de-

veloped, combines a selection of prediction tools to provide a

consensus result. This has demonstrated better performance,

but its local installation is slightly more complex than TMHMM

because of software dependencies. A comprehensive listing of

transmembrane domain prediction tools is available in the

Aramemnon transmembrane database [55] and in a recent re-

view [56] (Table 2).

Subcellular localization

To predict subcellular localization, and, thus, the third GO do-

main ‘cellular component’, the general tool TargetP [57] or the

secretory signal peptides predictor SignalP [58] are frequently

used. These, however, tend to perform poorly in the case of

plants [59, 60], so other plant-specific tools such as Plant-mPLoc

[61], AtSubP [60] or, for N-terminal targeting sequences, the tool

Predotar [62] may produce superior results (Table 2).

However, finding an adequate performance evaluation is

often difficult. To avoid biased results, one needs to validate the

predictions on a data set, which was not used for training of the

predictors [63], and it might be advisable to rely on several tools

as is done in the curated reference database for A. thaliana pro-

tein localization SUBA3 [64].
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Posttranslation modifications

In the case where one is interested in signaling, one can predict

phosphorylation sites using four plant tools at the moment,

namely PHOSFER [65], PhosPhAt [66], PlantPhos [67] and Musite

[68]. In terms of performance, the latter three tools have re-

cently been compared, and it seemed that for serine/threonine

predictions, at least in the model A. thaliana, Musite performed

best. It was, however, noted that for tyrosine phosphorylation,

the sensitivity can be lower for Musite at certain specificity

ranges [69] (Table 2).

Predicting function based on expression behavior

Finally, one might venture into functional prediction using

nonsequence-based data. A prime example is the ‘guilt by as-

sociation’ approach, whereby one assumes that a gene to be

annotated might exert function X (‘guilt’) if it is co-expressed

(‘associated’) with one or several genes of the same known

function X [70–73]. The underlying idea is that if several genes

consistently show the same expression, there is a good chance

that they are co-regulated, as they are needed for the same

process or pathway. Insightful examples are macromolecular

complexes such as ribosomes, or the cellulose synthesis com-

plex where this guilt-by-association approach works well [74].

Although this approach usually requires many transcriptomic

data sets, tissue-specific data sets are often available in gen-

ome and/or transcriptome projects, which might prove to be

sufficient. Indeed, tissue-specific data might even be helpful

to unravel tissue-specific processes, as has been done for A.

thaliana seed coat mucilage [75, 76]. In the case where meta-

bolic data are available, this might be used to complement the

guilt-by-association approach using protocols described re-

cently [77, 78].

Caution needs to be taken, as the guilt-by-association prin-

ciple is not always reliable and must be evaluated critically. The

approach depends on the number of reliably annotated genes

within a network. Indeed, even though it works well in cases

where queries are restricted to cases similar to the ones listed

above (few genes in a well-annotated network), the usefulness

of the method decreases when the procedure is scaled up [79].

Table 2. Available resources to complement functional annotation

Resource Web address Comments

TMHMM http://www.cbs.dtu.dk/services/TMHMM/ Can be downloaded and installed locally for academics. Online

version allows the submission of 10 000 sequences at most

TOPCONS http://topcons.net/ Can be downloaded and installed freely (GPL v2). Online version

allows the submission of 100MB sequence data at most

TargetP http://www.cbs.dtu.dk/services/TargetP/ Can be downloaded and installed locally for academics. The online

version allows the submission of 2000 sequences at most

Plant-mPLoc http://www.csbio.sjtu.edu.cn/bioinf/plant-

multi/

At time of writing problem with multifasta submission

AtSubP http://bioinfo3.noble.org/AtSubP/ Up to 2000 predictions

Predotar https://urgi.versailles.inra.fr/predotar/predo

tar.html

Only N-terminal signals for mitochondria and chloroplasts

PHOSFER http://saphire.usask.ca/saphire/phosfer/

index.html

Free for academic use only

PhosPhAt http://phosphat.uni-hohenheim.de/phos

phat.html

PlantPhos http://csb.cse.yzu.edu.tw/PlantPhos/Predict.

html

Uploads <2MB

Musite http://musite.net/ �100 predictions; can be downloaded and installed locally freely

(GPL v3)

TAIR/Protein

Interaction Data

https://www.arabidopsis.org/download/

index-auto.jsp?dir¼%2Fdownload_files

%2FProteins%2FProtein_interaction_data

Arabidopsis Predicted

Interactome and

Arabidopsis interactions

Viewer

ftp://ftp.arabidopsis.org/home/tair/Proteins/

Protein_interaction_data/Interactome2.0/

or http://bar.utoronto.ca/interactions/

cgi-bin/arabidopsis_interactions_

viewer.cgi

Downloadable from TAIR, these are the data for interactome v2.0

(also available at the Arabidopsis Interactions viewer). In total,

70 000 predicted interactions and 3000 experimentally deter-

mined interactions

IntAct http://www.ebi.ac.uk/intact/ Interactions from literature curations or user submissions; part of

the IMEx consortium

AtPIN http://atpin.bioinfoguy.net/cgi-bin/atpin.pl Incorporates data from: IntAct, BioGRID, TAIR, Predicted

Interactome for Arabidopsis, AtPID

ANAP http://gmdd.shgmo.org/Computational-

Biology/ANAP

Integrates 11 interaction databases

M.I.N.D https://associomics.dpb.carnegiescience.edu/

Associomics/Home.html

In total, 12 102 high-confidence protein–protein interactions, based

on split-uniquitin system in yeast; in addition, >3000

Arabidopsis membrane proteins in a separate screen are

included

PPIM http://comp-sysbio.org/ppim/ Contains predictions and information form literature

PRIN http://bis.zju.edu.cn/prin/ Predictions based on interlogs in various model organisms, where

studies have been carried out
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Protein interaction databases

A similar approach can be followed using the gene product, the

protein, where one searches for interacting proteins. The data

repositories of TAIR (Arabidopsis.org) contain such an approach,

as well as links to a number of protein interaction resources

such as the Arabidopsis interactions viewer [80], IntAct [81],

AtPIN [82] and ANAP [83] (Table 2). In addition, GabiPD [84] and

PhosPhAt [66] databases hold some information on kinases and

their phosphorylation targets, while in the case of membrane

proteins, the Membrane-based Interactome Database (M.I.N.D)

[85] can be used. The latter is particularly interesting because

unlike databases containing various types of curated or pre-

dicted data M.I.N.D. rely on experimental results from several

rounds of testing using the split-ubiquitin system. The effort for

establishing interaction databases is moving onto other plant

species, as can be seen in the Protein–Protein Interaction net-

work for Maize (PPIM) [86] and a predicted rice interactome net-

work (PRIN) [87]. A combination of co-expression and

interaction data can improve the reliability of the functional

prediction [88].

microRNA and target predictions

In addition to protein-coding genes, other prominent genomic

features that regulate gene expressions include noncoding

RNAs. This includes a diverse set of plant RNA molecules re-

viewed in [89, 90], which are transcribed, but never translated

into proteins. Next-generation sequencing of these RNA species,

which is typically performed using specialized RNASeq libraries

targeting small RNAs, has necessitated the development of

tools, which can quickly and easily deal with these data sets. An

in-depth discussion of all small RNA (sRNA) tools would itself

warrant a complete review, so for the purposes of this article,

we will restrict our discussion to tools relevant to detection and

analysis of microRNA (miRNA) with reference to sRNAtoolbox

[91], which offers a selection of user-friendly tools from expres-

sion profiling to target gene prediction.

miRNAs are a class of RNA that are involved in gene regula-

tion. Though similar in many respects to small interfering RNA,

miRNA can have many target mRNAs and acts as a gene regula-

tor (inhibitor) rather than in gene silencing. To disambiguate

the two, guidelines for the annotation of plant miRNAs have

been proposed by [92].

One of the main repositories of knowledge for miRNA is

miRBase [93]. The most recent release of the database contains

28 645 entries representing precursor miRNAs, expressing

35 828 mature miRNA products, in 223 species. miRBase add-

itionally serves as a registry for newly discovered miRNAs and

provides a naming service for miRNA genes. Aside from provid-

ing annotations and references for all published miRNA, a

‘Target’ pipeline is provided to predict the targets. However, as

this is only aimed at animal miRNA, plant researchers are best

referred to a recent benchmark [94] comparing many different

plant pipelines. Unfortunately, the outcome was that for species

other than A. thaliana, the accuracy was generally not too high.

It was, therefore, suggested [94] to use a union of predictions

stemming from Targetfinder [95] and psRNATarget [96] to maxi-

mize finding potential targets at the cost of identifying many

false targets. Alternatively, highly confident predictions at the

cost of losing many true targets were possible by only using

those predictions made by both psRNATarget and Tapir in hy-

brid mode [97].

Automated functional annotation pipelines

Given the dramatic increase in genome and transcriptome

sequencing, it is not surprising that the demand has grown for

fast automated annotation pipelines that quickly provide

meaningful biological data from these data sets. Many of the

early large-scale genome projects had specific annotation

groups assigned to carry out this task, e.g. TIGR for A. thaliana [2]

and ITAG for Solanum lycopersicum [98]. These frequently fea-

tured a combination of computational or automated annota-

tions coupled with manual curations. Several recent genome

projects have to a greater extent used automated pipelines,

which may reflect the increasing quality of the tools available. It

should of course be noted that many of the automated pipelines

incorporate data, which was manually curated in many of the

earlier genomes. Taken together, this also shows that plant gen-

ome analysis benefits from the time gain offered by automated

tools and increases the focus on analyses of more and different

data sets.

In general, these tools can be partitioned based on the

underlying ontology used. Probably, the best known tool to infer

GO annotations is BLAST2GO [99], which can also incorporate

InterProScan and KEGG data. BLAST2GO provides a user-

friendly and well-integrated interface featuring locally installed

software offering graphical outputs, maps, etc. However, some

of these features are not available in the free and academic ver-

sion but require a license. An alternative, which is aimed at

plant researchers who would like to apply GO terms, is provided

by the fully integrated TRAPID plant-specific pipeline. TRAPID

offers a Web-based analysis platform and alleviates the need to

install software [35]. As TRAPID also uses gene families, it usu-

ally should provide good annotation performance.

To apply the KO entries (or K numbers) from the KEGG data-

base to a gene set, the popular online tool KEGG Automatic

Annotation Server (KAAS) [100] provides a user-friendly inter-

face. This service relies on BLAST searches and either on unidir-

ectional hits or on bidirectional hits together with some

heuristics. Recent updates to KEGG have introduced the

BlastKOALA and GhostKOALA online tools, which allow users to

exploit data from KEGG’s internal annotation tool (KOALA)

[101]. Both tools target the nonredundant pangenomic data set

generated from KEGG’s genes database, with GhostKOALA using

the GHOSTX search algorithm, which is considered more appro-

priate for metagenome annotation. The result from these tools

can be used as input for the other KEGG modules (e.g. KEGG

pathways).

The MapMan ontology can be inferred using the online tool

Mercator [102]. This allows annotation of both protein and DNA

sequences and incorporates BLAST and CDD searches as well as

an optional InterProScan annotation. In the case of DNA se-

quence submission, the file is simply analyzed in all six frames

for domain searches, and the annotations merged with the ex-

pectation that the correct frame will return the best result.

Users can optionally choose a selection of well-annotated plant

genomes to be included in the analysis.

Performing annotations using locally installable
resources

For the more computation savvy researcher who has access to

decent computing resources, Trinotate (https://trinotate.github.

io) offers a comprehensive annotation suite, which extends the

popular Trinity RNASeq assembly pipeline [8]. It comprises a

BLAST search against the manually assigned SWISSPROT data
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set, HMMER searches against the PFAM database as well as find-

ing signal sequences and predicting subcellular localization

using TMHMM [53] and SignalP [58], respectively. In addition, it

allows inclusion of the RNAmmer [103] tool which is used to

identify rRNA transcripts and integrates a selection of annota-

tion databases (KEGG, EggNOG and GO). An alternative is the

plant-specific AHRD pipeline (https://github.com/groupschoof/

AHRD), which provides a consensus annotation based on a set

of input gene descriptions obtained by sequence similarity

searches. The annotations are the result of scoring the input

gene annotations according to both their frequency and the

reputation of the database from which it was derived.

The sets of tools described in the previous two sections

using controlled terms or annotations are often preferred, given

the ease with which the results can be compared against other

similarly annotated genomes. Prominent examples that use

these tools include the melon genome, which used KAAS [104],

the peanut ancestor genome, which used AHRD [105], and the

genome of the wild tomato, which used Mercator [106].

An example of annotation pipelines using rapeseed

proteins

Table 3 provides a small survey of the integrated tools by anno-

tating 1476 rapeseed proteins using the automated annotation

pipelines. It is evident that the tools relying on their own

infrastructure generally deliver results quickly. In addition, the

annotation rate ranges from 26% for the KEGG-based tools,

likely based on KEGG’s stronger focus on metabolism, to 56% for

GO or MAPMAN-based terms. The latter value compares with

the annotation rate of about 51% (from the downloaded refer-

ence) when counting any GO term (including ‘cellular compo-

nent’). In contrast, BLAST2GO reaches a higher annotation rate

of 78% but requires 10� more time when run on a typical work-

station type laptop (e.g. i7 Quadcore). As noted above, such a

high annotation rate (especially as it is higher than the refer-

ence) could result from aggressive (and thus sensitive) standard

settings, which potentially should be further tuned when anno-

tating plant genomes. Nevertheless, BLAST2GO might provide

valuable leads into less likely functions, and as was the case for

TAIR, most annotations were for the ‘Cellular Component’ do-

main, as for 70% of the genes a cellular component domain GO

term could be determined. It is noteworthy that both plant-

specific pipelines (TRAPID and Mercator) reach similar annota-

tion rates, which is likely because of their specific fine tuning to

plant-derived proteins.

Integrating the output from several pipelines has been

shown to be beneficial, such as in the case of the potato crop

[107]. In this pipeline, the authors used Trinotate, BLAST2GO,

OrthoMCL together with other tools to produce an Ensemble

classifier by counting how many different pipelines a certain

GO term was detected. Interestingly, by using even simple

Table 3. Integrated tools for the functional analysis of plant genomes

Resource Time taken Annotation

rate (%)

Comments

Reference — 51 At least one GO term assigned including cellular component

Blast2GO 8h 23min 78 BLAST is performed locally or as WebBLAST via NCBI; InterProScan is performed as a

Web service at the European Bioinformatics Institute (EBI)

KAAS 10min (only single-

directional best hit (SBH)

was used as a survey

sample of sequence)

29 Runs as a Web service, no user resources needed

GhostKOALA 28min 26 Runs as a Web service, no user resources needed

Mercator 5min 56 Runs as a Web service, no user resources needed

TRAPID 5min 56 Runs as a Web service, no user resources needed

Note. For the analysis, the first 1476 proteins from the Brassica proteome version 5 were downloaded from http://www.genoscope.cns.fr/brassicanapus/data/ alongside

their GO annotations, representing exactly 10 000 lines of text and submitted to the various services, where available searches were limited to plant data sets. In the

case of Blast2GO, WebBLAST was used. We have rounded the values, as annotations are subjected to updates, and time taken will depend on server loads. Therefore,

these values should be seen as a general orientation.

Table 4. Tools and Web sites useful in annotating large protein families

Resource Function Web address

CoGe Compares genomes, find synteny https://genomevolution.org

PlantTFDB Plant Transcription Factor families http://planttfdb.cbi.pku.edu.cn/

Potsdam plntfdb Plant Transcription Factor families http://plntfdb.bio.uni-potsdam.de/v3.0/

P450 Database P450 protein families http://drnelson.uthsc.edu/CytochromeP450.html

CAZy Enzymes acting on carbohydrates http://www.cazy.org/

Aramemnona Plant membrane proteins http://aramemnon.uni-koeln.de/

Merops Database Peptidases http://merops.sanger.ac.uk

PLAZA Generalist Plant Family database http://bioinformatics.psb.ugent.be/plaza

GreenPhylDB Generalist Plant Family database www.greenphyl.org/

Note. aAlso lists a comprehensive set of tools for transmembrane domains, subcellular localization and lipid modifications.

8 | Bolger et al.



Ensembles, they increased the concordance with literature an-

notations. A similar multiple site data retrieval strategy was

used for the wheat database dbWFA [108], which provides a

data warehouse strategy and, thus, allows querying and com-

bining different annotations per wheat gene to provide a more

comprehensive picture.

Potential pitfalls and difficult gene families

Generally speaking, the high-throughput tools mentioned above

use methods, which can quickly identify the general gene func-

tion. This frequently relies on identifying the protein family

based on the aforementioned HMMs. Although this is often suf-

ficient, there are many cases where a finer-grained approach is

necessary. Plant genomes are renowned for containing large

gene families such as transcription factors, which can easily

number in the thousands. The Cytochrome P450 family of genes

is known to be large in many organisms, and it is frequently the

target of scientific interest in plants given their prominent role

in secondary metabolite biosynthesis, which is particularly im-

portant to medicinal plants. Indeed, the two large projects

PhytoMetaSyn [109] and Medicinal Plant Genome Resource [110]

are dedicated to the transcriptome analysis of medicinal plants.

In cases of large or difficult gene families, it is often neces-

sary to analyze data in detail by building gene family trees,

which first require careful multiple sequence alignments. This

dismantles large groups of genes into individual genes or

smaller clades allowing distinct functions to be applied. An al-

ternative and/or complementary approach could involve ana-

lyzing syntenic relationships using the CoGE resource [111].

There are many resources available that are dedicated to anno-

tating difficult gene families such as PlantTFDB and Potsdam

PlnTFDB for plant transcription factors [112–114], the P450 data-

base for P450 enzymes [115], CAZy for carbohydrate active en-

zymes [116], Merops for peptidases [117] and Aramemnon for

plant membrane proteins [55], which are summarized in

Table 4. These are complemented by the more generalist plant

family database PLAZA [15] and GreenPhylDB [118]. On a

Figure 2. Flowchart for the annotation of plant genomes/transcriptomes.
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broader level, using detailed phylogenetic information in the

genomic era brings in phylogenomics tools whose use is re-

viewed in [119].

Recipe

Based on the discussion above and focusing on the use of online

resources, one could annotate a plant genome almost automat-

ically following the steps below (Figure 2):

(i) Generation of protein sequences: The first question one

should ask is whether protein sequences are available (which is

typically the case in a genome project) or not (which is typically

the case in a transcriptome project). If protein-coding sequences

are not available, these should be generated from transcript se-

quences using, e.g., FrameDP or the AUGUSTUS/BREAKER1 pipe-

line for genome assemblies. Other tools to perform this task are

discussed in the section ‘Finding coding regions in transcrip-

tome assemblies’. This would provide a common input for the

subsequent annotation regardless of the starting approach.

(iia) Annotation: One would then submit the resulting pro-

tein sequences as one file to the following three online re-

sources. As all these services make use of their own high-

performance computing pipelines and are free for academic

users, they can be run in parallel.

• KAAS can be used to infer KEGG terms.
• The TRAPID pipeline can be used for GO terms.
• Mercator can be used for MapMan terms.

At this stage, one could also use BLAST2GO to infer GO anno-

tations; however, this is only possible if one either has a license

or is an academic user. It should be considered, however, that

BLAST2GO has a much longer run-time, which could impede

subsequent genome annotation analysis tasks. Thus, a decision

is needed if the additional time is worth the extra annotations,

which are potentially not provided by annotation alternatives

like TRAPID.

(iib) (optional) Validation of annotations: In cases where

local computational resources are available, one should add-

itionally run EggNOG scans on the side, to further validate and

compare the derived functional annotations. To test if this pro-

cedure is feasible using the available equipment, we recom-

mend running a truncated sample of, e.g., 100–1000 protein

sequences first.

The above two steps provide a fast solution to arrive at a

plethora of terms, which can be easily combined using even

simple tools like MS Excel, where one could add the different

ontologies into separate rows for inspection. Even though the

different ontologies cannot be directly compared with each

other, they help in understanding the genome in their own

right.

This would already provide a good working annotation for

many research topics and could be used to answer questions

such as Are certain processes occurring or not? Or do we see

more genes in secondary metabolism than in related plants?

(iii) Additional information: One can annotate transmem-

brane domains using TMHMM and/or TOPCons (the online ver-

sions of both were relatively easy to use in our hands, but the

online TMHMM tool was significantly faster). For TMHMM, one

might have to split the protein sequence file obtained from Step

(i) into several batches. In the simplest case, one could do this

by hand in a text editor such as Notepadþþ on Windows or

TextWrangler on MacOS.

(iv) Similarly, as for transmembrane domains (i.e. after split-

ting of the file from Step (i)), subcellular localization can be pre-

dicted using the online tools TargetP and/or AtSubP.

(v) Finally, one could use the PhosPhat and PHOSFER online

tools for a prediction of phosphorylation sites.

After the annotation process is complete, it is advisable to

look at a selection of these annotations to verify whether they

are correct. A good choice for a more experiment-oriented re-

searcher would be to focus on the genes or gene families, which

one works with in the laboratory. This verifies that the expected

annotations are present and that no wrong annotations had

been added. Alternatively, or in addition, manually comparing

genes described in the literature with their automatically

derived annotations are highly recommended.

Key Points

• Annotating plant genomes should (also) rely on ontol-

ogies, and there are several complementary resources

available.
• Generally, large-scale annotation relies on homology

transfer, and it is complemented by finding domains

and protein families.
• Annotation can be further complemented by add-

itional predictions such as transmembrane domains,

subcellular localization and phosphorylation sites.
• Plant genome annotation can be performed automat-

ically using the plant-specific tool Mercator as well as

the generalists TRAPID (which features a special plant

module), KAAS/BlastKOALA and Blast2GO without any

significant computational resources.
• It is important to quality check the annotation and to

remember that all annotations should be treated as

hypotheses.

Funding

The German Ministry for Education and Research (reference

number 0315961, in partial), the Ministry of Innovation,

Science and Research of North-Rhine Westphalia within the

framework of the North-Rhine Westphalia Strategieprojekt

BioEconomy Science Center (grant number 313/323–400–

00213) and the F.R.S-FNRS Fonds de la Recherche
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