000826314 001__ 826314
000826314 005__ 20210129225559.0
000826314 0247_ $$2doi$$a10.1016/j.jprocont.2011.11.002
000826314 0247_ $$2ISSN$$a0959-1524
000826314 0247_ $$2ISSN$$a1873-2771
000826314 0247_ $$2WOS$$aWOS:000301688000014
000826314 0247_ $$2altmetric$$aaltmetric:1164289
000826314 037__ $$aFZJ-2017-00547
000826314 082__ $$a004
000826314 1001_ $$0P:(DE-HGF)0$$aHannemann-Tamás, Ralf$$b0
000826314 245__ $$aHow to verify optimal controls computed by direct shooting methods? – A tutorial
000826314 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2012
000826314 3367_ $$2DRIVER$$aarticle
000826314 3367_ $$2DataCite$$aOutput Types/Journal article
000826314 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484666533_11972
000826314 3367_ $$2BibTeX$$aARTICLE
000826314 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826314 3367_ $$00$$2EndNote$$aJournal Article
000826314 520__ $$aFor the solution of optimal control problems, direct methods have been established in the process engineering community. If set up correctly they robustly provide more or less accurate approximations of the exact solution. In the usual engineering practice, neither the distance to the exact solution is reflected, nor the compliance with the continuous necessary conditions in form of Pontryagin's Minimum Principle is checked. At the end, some approximate solution is available but its quality is at question.This tutorial addresses the problem of the verification of optimal controls computed by direct shooting methods. We focus on this popular transcription method though the results are also relevant for other solution strategies. We review known results spread in the mathematical literature on optimal control to show how the output of the nonlinear programs (NLPs) resulting from single shooting transcriptions of optimal control problems can be interpreted in the context of Pontryagin's Minimum Principle. In particular, we show how to approximate continuous adjoint variables by means of the dual information provided by the NLP solver. Based on this adjoint approximation we use a multi-level setting to construct an estimate of the distance to a true extremal solution satisfying the continuous necessary conditions of optimality. A comprehensive case study illustrates the theoretical results.
000826314 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000826314 588__ $$aDataset connected to CrossRef
000826314 7001_ $$0P:(DE-Juel1)162219$$aMarquardt, Wolfgang$$b1$$eCorresponding author
000826314 773__ $$0PERI:(DE-600)2000438-2$$a10.1016/j.jprocont.2011.11.002$$gVol. 22, no. 2, p. 494 - 507$$n2$$p494 - 507$$tJournal of process control$$v22$$x0959-1524$$y2012
000826314 8564_ $$uhttps://juser.fz-juelich.de/record/826314/files/1-s2.0-S0959152411002216-main.pdf$$yRestricted
000826314 8564_ $$uhttps://juser.fz-juelich.de/record/826314/files/1-s2.0-S0959152411002216-main.gif?subformat=icon$$xicon$$yRestricted
000826314 8564_ $$uhttps://juser.fz-juelich.de/record/826314/files/1-s2.0-S0959152411002216-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000826314 8564_ $$uhttps://juser.fz-juelich.de/record/826314/files/1-s2.0-S0959152411002216-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000826314 8564_ $$uhttps://juser.fz-juelich.de/record/826314/files/1-s2.0-S0959152411002216-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000826314 8564_ $$uhttps://juser.fz-juelich.de/record/826314/files/1-s2.0-S0959152411002216-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000826314 909CO $$ooai:juser.fz-juelich.de:826314$$pVDB
000826314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162219$$aForschungszentrum Jülich$$b1$$kFZJ
000826314 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000826314 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PROCESS CONTR : 2015
000826314 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826314 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826314 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826314 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826314 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826314 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826314 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826314 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826314 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000826314 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000826314 9201_ $$0I:(DE-Juel1)VS-V-20090406$$kVS-V$$lVorstandsbereich Wissenschaft, Außenbeziehungen$$x0
000826314 9201_ $$0I:(DE-Juel1)GRS-20100316$$kGRS Jülich ; German Research School for Simulation Sciences$$lGRS$$x1
000826314 980__ $$ajournal
000826314 980__ $$aVDB
000826314 980__ $$aI:(DE-Juel1)VS-V-20090406
000826314 980__ $$aI:(DE-Juel1)GRS-20100316
000826314 980__ $$aUNRESTRICTED