000826322 001__ 826322
000826322 005__ 20210129225600.0
000826322 0247_ $$2doi$$a10.1063/1.4972833
000826322 0247_ $$2ISSN$$a0021-8979
000826322 0247_ $$2ISSN$$a0148-6349
000826322 0247_ $$2ISSN$$a1089-7550
000826322 0247_ $$2WOS$$aWOS:000392174000014
000826322 0247_ $$2Handle$$a2128/16960
000826322 037__ $$aFZJ-2017-00555
000826322 082__ $$a530
000826322 1001_ $$0P:(DE-HGF)0$$aFleck, K.$$b0
000826322 245__ $$aThe influence of non-stoichiometry on the switching kinetics of strontium-titanate ReRAM devices
000826322 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2016
000826322 3367_ $$2DRIVER$$aarticle
000826322 3367_ $$2DataCite$$aOutput Types/Journal article
000826322 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484728792_22334
000826322 3367_ $$2BibTeX$$aARTICLE
000826322 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826322 3367_ $$00$$2EndNote$$aJournal Article
000826322 520__ $$aCompared to conventional NAND flash resistive switching metal-oxide cells show a number of advantages, like an increased endurance, lower energy consumption, and superior switching speed. Understanding the role of defects for the resistive switching phenomenon in metal oxides is crucial for their improvement and thereby also for their acceptance as a next generation data storage device. Strontium titanate (STO) is considered a model material due to its thoroughly investigated defect chemistry. This paper presents a comparative study of the switching kinetics for three different compositions [Sr]/([Sr]+[Ti]) of 0.57 (Sr-rich), 0.50 (stoichiometric STO), and 0.46 (Ti-rich STO). The STO films, deposited by atomic layer deposition, were integrated in Pt/STO/TiN nanocrossbars with a feature size of 100 nm. By analysis of the transient currents, the switching kinetics are investigated between 10 ns and 104 s for the SET and 10 ns and 100 s for the RESET. A clear influence of the composition on the degree of nonlinearity of the switching kinetics was observed. Applying an analytical model for the oxygen vacancy migration, we were able to explain the differences in the SET kinetics by composition-dependent changes in the thermal conductivity and by a lower activation energy for the Ti-rich sample. This might be utilized in design rules of future ReRAM devices.I. INTRODUCTION
000826322 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000826322 588__ $$aDataset connected to CrossRef
000826322 7001_ $$0P:(DE-Juel1)140489$$aAslam, N.$$b1
000826322 7001_ $$0P:(DE-Juel1)130717$$aHoffmann-Eifert, S.$$b2
000826322 7001_ $$0P:(DE-HGF)0$$aLongo, V.$$b3
000826322 7001_ $$0P:(DE-HGF)0$$aRoozeboom, F.$$b4
000826322 7001_ $$0P:(DE-HGF)0$$aKessels, W. M. M.$$b5
000826322 7001_ $$0P:(DE-HGF)0$$aBöttger, U.$$b6
000826322 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b7
000826322 7001_ $$0P:(DE-Juel1)158062$$aMenzel, S.$$b8
000826322 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/1.4972833$$gVol. 120, no. 24, p. 244502 -$$n24$$p244502 -$$tJournal of applied physics$$v120$$x1089-7550$$y2016
000826322 8564_ $$uhttps://juser.fz-juelich.de/record/826322/files/1.4972833.pdf$$yOpenAccess
000826322 8564_ $$uhttps://juser.fz-juelich.de/record/826322/files/1.4972833.gif?subformat=icon$$xicon$$yOpenAccess
000826322 8564_ $$uhttps://juser.fz-juelich.de/record/826322/files/1.4972833.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000826322 8564_ $$uhttps://juser.fz-juelich.de/record/826322/files/1.4972833.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000826322 8564_ $$uhttps://juser.fz-juelich.de/record/826322/files/1.4972833.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000826322 909CO $$ooai:juser.fz-juelich.de:826322$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000826322 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826322 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826322 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL PHYS : 2015
000826322 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826322 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826322 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826322 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000826322 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000826322 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826322 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826322 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000826322 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826322 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826322 9141_ $$y2016
000826322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b7$$kFZJ
000826322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b8$$kFZJ
000826322 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000826322 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000826322 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000826322 980__ $$ajournal
000826322 980__ $$aVDB
000826322 980__ $$aUNRESTRICTED
000826322 980__ $$aI:(DE-Juel1)PGI-7-20110106
000826322 980__ $$aI:(DE-82)080009_20140620
000826322 9801_ $$aFullTexts