001     826322
005     20210129225600.0
024 7 _ |2 doi
|a 10.1063/1.4972833
024 7 _ |2 ISSN
|a 0021-8979
024 7 _ |2 ISSN
|a 0148-6349
024 7 _ |2 ISSN
|a 1089-7550
024 7 _ |2 WOS
|a WOS:000392174000014
024 7 _ |2 Handle
|a 2128/16960
037 _ _ |a FZJ-2017-00555
082 _ _ |a 530
100 1 _ |0 P:(DE-HGF)0
|a Fleck, K.
|b 0
245 _ _ |a The influence of non-stoichiometry on the switching kinetics of strontium-titanate ReRAM devices
260 _ _ |a Melville, NY
|b American Inst. of Physics
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1484728792_22334
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Compared to conventional NAND flash resistive switching metal-oxide cells show a number of advantages, like an increased endurance, lower energy consumption, and superior switching speed. Understanding the role of defects for the resistive switching phenomenon in metal oxides is crucial for their improvement and thereby also for their acceptance as a next generation data storage device. Strontium titanate (STO) is considered a model material due to its thoroughly investigated defect chemistry. This paper presents a comparative study of the switching kinetics for three different compositions [Sr]/([Sr]+[Ti]) of 0.57 (Sr-rich), 0.50 (stoichiometric STO), and 0.46 (Ti-rich STO). The STO films, deposited by atomic layer deposition, were integrated in Pt/STO/TiN nanocrossbars with a feature size of 100 nm. By analysis of the transient currents, the switching kinetics are investigated between 10 ns and 104 s for the SET and 10 ns and 100 s for the RESET. A clear influence of the composition on the degree of nonlinearity of the switching kinetics was observed. Applying an analytical model for the oxygen vacancy migration, we were able to explain the differences in the SET kinetics by composition-dependent changes in the thermal conductivity and by a lower activation energy for the Ti-rich sample. This might be utilized in design rules of future ReRAM devices.I. INTRODUCTION
536 _ _ |0 G:(DE-HGF)POF3-521
|a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)140489
|a Aslam, N.
|b 1
700 1 _ |0 P:(DE-Juel1)130717
|a Hoffmann-Eifert, S.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Longo, V.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Roozeboom, F.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Kessels, W. M. M.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Böttger, U.
|b 6
700 1 _ |0 P:(DE-Juel1)131022
|a Waser, R.
|b 7
700 1 _ |0 P:(DE-Juel1)158062
|a Menzel, S.
|b 8
773 _ _ |0 PERI:(DE-600)1476463-5
|a 10.1063/1.4972833
|g Vol. 120, no. 24, p. 244502 -
|n 24
|p 244502 -
|t Journal of applied physics
|v 120
|x 1089-7550
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/826322/files/1.4972833.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826322/files/1.4972833.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826322/files/1.4972833.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826322/files/1.4972833.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826322/files/1.4972833.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:826322
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131022
|a Forschungszentrum Jülich
|b 7
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)158062
|a Forschungszentrum Jülich
|b 8
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-521
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J APPL PHYS : 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21