000826323 001__ 826323
000826323 005__ 20210129225601.0
000826323 0247_ $$2doi$$a10.1103/PhysRevApplied.6.064015
000826323 0247_ $$2Handle$$a2128/13477
000826323 0247_ $$2WOS$$aWOS:000391036500003
000826323 037__ $$aFZJ-2017-00556
000826323 082__ $$a530
000826323 1001_ $$0P:(DE-HGF)0$$aFleck, Karsten$$b0$$eCorresponding author
000826323 245__ $$aUniting Gradual and Abrupt set Processes in Resistive Switching Oxides
000826323 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2016
000826323 3367_ $$2DRIVER$$aarticle
000826323 3367_ $$2DataCite$$aOutput Types/Journal article
000826323 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484728996_22329
000826323 3367_ $$2BibTeX$$aARTICLE
000826323 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826323 3367_ $$00$$2EndNote$$aJournal Article
000826323 520__ $$aIdentifying limiting factors is crucial for a better understanding of the dynamics of the resistive switching phenomenon in transition-metal oxides. This improved understanding is important for the design of fast-switching, energy-efficient, and long-term stable redox-based resistive random-access memory devices. Therefore, this work presents a detailed study of the set kinetics of valence change resistive switches on a time scale from 10 ns to 104  s, taking Pt/SrTiO3/TiN nanocrossbars as a model material. The analysis of the transient currents reveals that the switching process can be subdivided into a linear-degradation process that is followed by a thermal runaway. The comparison with a dynamical electrothermal model of the memory cell allows the deduction of the physical origin of the degradation. The origin is an electric-field-induced increase of the oxygen-vacancy concentration near the Schottky barrier of the Pt/SrTiO3 interface that is accompanied by a steadily rising local temperature due to Joule heating. The positive feedback of the temperature increase on the oxygen-vacancy mobility, and thereby on the conductivity of the filament, leads to a self-acceleration of the set process.
000826323 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000826323 588__ $$aDataset connected to CrossRef
000826323 7001_ $$0P:(DE-HGF)0$$aLa Torre, Camilla$$b1
000826323 7001_ $$0P:(DE-Juel1)140489$$aAslam, Nabeel$$b2
000826323 7001_ $$0P:(DE-Juel1)130717$$aHoffmann-Eifert, Susanne$$b3
000826323 7001_ $$0P:(DE-HGF)0$$aBöttger, Ulrich$$b4
000826323 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b5
000826323 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.6.064015$$gVol. 6, no. 6, p. 064015$$n6$$p064015$$tPhysical review applied$$v6$$x2331-7019$$y2016
000826323 8564_ $$uhttps://juser.fz-juelich.de/record/826323/files/PhysRevApplied.6.064015.pdf$$yOpenAccess
000826323 8564_ $$uhttps://juser.fz-juelich.de/record/826323/files/PhysRevApplied.6.064015.gif?subformat=icon$$xicon$$yOpenAccess
000826323 8564_ $$uhttps://juser.fz-juelich.de/record/826323/files/PhysRevApplied.6.064015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000826323 8564_ $$uhttps://juser.fz-juelich.de/record/826323/files/PhysRevApplied.6.064015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000826323 8564_ $$uhttps://juser.fz-juelich.de/record/826323/files/PhysRevApplied.6.064015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000826323 8564_ $$uhttps://juser.fz-juelich.de/record/826323/files/PhysRevApplied.6.064015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000826323 909CO $$ooai:juser.fz-juelich.de:826323$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000826323 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826323 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000826323 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2015
000826323 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826323 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826323 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000826323 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000826323 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826323 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826323 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826323 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b5$$kFZJ
000826323 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130717$$aForschungszentrum Jülich$$b3$$kFZJ
000826323 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000826323 9141_ $$y2016
000826323 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000826323 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
000826323 9801_ $$aFullTexts
000826323 980__ $$ajournal
000826323 980__ $$aVDB
000826323 980__ $$aUNRESTRICTED
000826323 980__ $$aI:(DE-Juel1)PGI-7-20110106
000826323 980__ $$aI:(DE-Juel1)PGI-10-20170113