001     826323
005     20210129225601.0
024 7 _ |2 doi
|a 10.1103/PhysRevApplied.6.064015
024 7 _ |2 Handle
|a 2128/13477
024 7 _ |a WOS:000391036500003
|2 WOS
037 _ _ |a FZJ-2017-00556
082 _ _ |a 530
100 1 _ |0 P:(DE-HGF)0
|a Fleck, Karsten
|b 0
|e Corresponding author
245 _ _ |a Uniting Gradual and Abrupt set Processes in Resistive Switching Oxides
260 _ _ |a College Park, Md. [u.a.]
|b American Physical Society
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1484728996_22329
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Identifying limiting factors is crucial for a better understanding of the dynamics of the resistive switching phenomenon in transition-metal oxides. This improved understanding is important for the design of fast-switching, energy-efficient, and long-term stable redox-based resistive random-access memory devices. Therefore, this work presents a detailed study of the set kinetics of valence change resistive switches on a time scale from 10 ns to 104  s, taking Pt/SrTiO3/TiN nanocrossbars as a model material. The analysis of the transient currents reveals that the switching process can be subdivided into a linear-degradation process that is followed by a thermal runaway. The comparison with a dynamical electrothermal model of the memory cell allows the deduction of the physical origin of the degradation. The origin is an electric-field-induced increase of the oxygen-vacancy concentration near the Schottky barrier of the Pt/SrTiO3 interface that is accompanied by a steadily rising local temperature due to Joule heating. The positive feedback of the temperature increase on the oxygen-vacancy mobility, and thereby on the conductivity of the filament, leads to a self-acceleration of the set process.
536 _ _ |0 G:(DE-HGF)POF3-521
|a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a La Torre, Camilla
|b 1
700 1 _ |0 P:(DE-Juel1)140489
|a Aslam, Nabeel
|b 2
700 1 _ |0 P:(DE-Juel1)130717
|a Hoffmann-Eifert, Susanne
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Böttger, Ulrich
|b 4
700 1 _ |0 P:(DE-Juel1)158062
|a Menzel, Stephan
|b 5
773 _ _ |0 PERI:(DE-600)2760310-6
|a 10.1103/PhysRevApplied.6.064015
|g Vol. 6, no. 6, p. 064015
|n 6
|p 064015
|t Physical review applied
|v 6
|x 2331-7019
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/826323/files/PhysRevApplied.6.064015.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826323/files/PhysRevApplied.6.064015.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826323/files/PhysRevApplied.6.064015.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826323/files/PhysRevApplied.6.064015.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826323/files/PhysRevApplied.6.064015.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826323/files/PhysRevApplied.6.064015.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:826323
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)158062
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130717
|a Forschungszentrum Jülich
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-521
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
|a American Physical Society Transfer of Copyright Agreement
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b PHYS REV APPL : 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)PGI-10-20170113


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21