000826328 001__ 826328
000826328 005__ 20210129225601.0
000826328 0247_ $$2doi$$a10.1109/ESSDERC.2016.7599611
000826328 037__ $$aFZJ-2017-00561
000826328 1001_ $$0P:(DE-HGF)0$$aFleck, K.$$b0
000826328 1112_ $$aESSDERC 2016 - 46th European Solid-State Device Research Conference$$cLausanne$$d2016-09-12 - 2016-09-15$$wSwitzerland
000826328 245__ $$aEnergy dissipation during pulsed switching of strontium-titanate based resistive switching memory devices
000826328 260__ $$bIEEE$$c2016
000826328 300__ $$a160
000826328 3367_ $$2ORCID$$aCONFERENCE_PAPER
000826328 3367_ $$033$$2EndNote$$aConference Paper
000826328 3367_ $$2BibTeX$$aINPROCEEDINGS
000826328 3367_ $$2DRIVER$$aconferenceObject
000826328 3367_ $$2DataCite$$aOutput Types/Conference Paper
000826328 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1484750148_22329
000826328 520__ $$aResistive random access memories based on redox phenomena (ReRAM) combine several advantages. Beside their good scalability, high endurance and fast switching speed they are also very energy efficient. This work presents a study of the SET kinetics of SrTiO3-based resistive switches covering the timescale from <;10 ns up to 104 s. The power-dependence of the SET kinetics and the switching energy are analyzed. It is found that there is a minimum energy that is necessary for switching at a certain time furthermore it is found that devices that otherwise behave very differently have the same minimum switching energies. The experimental findings are discussed theoretically using a 2D axisymmeric finite element simulation model. Based on the simulation results design guidelines to minimize the minimum switching energy are derived.
000826328 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000826328 588__ $$aDataset connected to CrossRef Conference
000826328 7001_ $$0P:(DE-HGF)0$$aBottger, U.$$b1
000826328 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b2$$ufzj
000826328 7001_ $$0P:(DE-Juel1)140489$$aAslam, N.$$b3
000826328 7001_ $$0P:(DE-Juel1)130717$$aHoffmann-Eifert, S.$$b4
000826328 7001_ $$0P:(DE-Juel1)158062$$aMenzel, S.$$b5$$ufzj
000826328 773__ $$a10.1109/ESSDERC.2016.7599611
000826328 8564_ $$uhttps://juser.fz-juelich.de/record/826328/files/07599611.pdf$$yRestricted
000826328 8564_ $$uhttps://juser.fz-juelich.de/record/826328/files/07599611.gif?subformat=icon$$xicon$$yRestricted
000826328 8564_ $$uhttps://juser.fz-juelich.de/record/826328/files/07599611.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000826328 8564_ $$uhttps://juser.fz-juelich.de/record/826328/files/07599611.jpg?subformat=icon-180$$xicon-180$$yRestricted
000826328 8564_ $$uhttps://juser.fz-juelich.de/record/826328/files/07599611.jpg?subformat=icon-640$$xicon-640$$yRestricted
000826328 8564_ $$uhttps://juser.fz-juelich.de/record/826328/files/07599611.pdf?subformat=pdfa$$xpdfa$$yRestricted
000826328 909CO $$ooai:juser.fz-juelich.de:826328$$pVDB
000826328 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000826328 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b2$$kFZJ
000826328 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b5$$kFZJ
000826328 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130717$$aForschungszentrum Jülich$$b4$$kFZJ
000826328 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000826328 9141_ $$y2016
000826328 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000826328 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
000826328 980__ $$acontrib
000826328 980__ $$aVDB
000826328 980__ $$aUNRESTRICTED
000826328 980__ $$aI:(DE-Juel1)PGI-7-20110106
000826328 980__ $$aI:(DE-Juel1)PGI-10-20170113