000826338 001__ 826338
000826338 005__ 20210129225602.0
000826338 0247_ $$2doi$$a10.1021/acsami.6b12706
000826338 0247_ $$2ISSN$$a1944-8244
000826338 0247_ $$2ISSN$$a1944-8252
000826338 0247_ $$2WOS$$aWOS:000392037400124
000826338 037__ $$aFZJ-2017-00566
000826338 082__ $$a540
000826338 1001_ $$0P:(DE-Juel1)130677$$aGunkel, F.$$b0$$eCorresponding author
000826338 245__ $$aThermodynamic Ground States of Complex Oxide Heterointerfaces
000826338 260__ $$aWashington, DC$$bSoc.$$c2017
000826338 3367_ $$2DRIVER$$aarticle
000826338 3367_ $$2DataCite$$aOutput Types/Journal article
000826338 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1504017660_10819
000826338 3367_ $$2BibTeX$$aARTICLE
000826338 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826338 3367_ $$00$$2EndNote$$aJournal Article
000826338 520__ $$aThe formation mechanism of 2-dimensional electron gases (2DEGs) at heterointerfaces between nominally insulating oxides is addressed with a thermodynamical approach. We provide a comprehensive analysis of the thermodynamic ground states of various 2DEG systems directly probed in high temperature equilibrium conductivity measurements. We unambiguously identify two distinct classes of oxide heterostructures: For epitaxial perovskite/perovskite heterointerfaces (LaAlO3/SrTiO3, NdGaO3/SrTiO3, and (La,Sr)(Al,Ta)O3/SrTiO3), we find the 2DEG formation being based on charge transfer into the interface, stabilized by the electric field in the space charge region. In contrast, for amorphous LaAlO3/SrTiO3 and epitaxial γ-Al2O3/SrTiO3 heterostructures, the 2DEG formation mainly relies on the formation and accumulation of oxygen vacancies. This class of 2DEG structures exhibits an unstable interface reconstruction associated with a quenched nonequilibrium state.
000826338 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000826338 588__ $$aDataset connected to CrossRef
000826338 7001_ $$0P:(DE-Juel1)130717$$aHoffmann-Eifert, S.$$b1
000826338 7001_ $$0P:(DE-HGF)0$$aHeinen, R. A.$$b2
000826338 7001_ $$0P:(DE-HGF)0$$aChristensen, D. V.$$b3
000826338 7001_ $$0P:(DE-HGF)0$$aChen, Y. Z.$$b4
000826338 7001_ $$0P:(DE-HGF)0$$aPryds, N.$$b5
000826338 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b6
000826338 7001_ $$0P:(DE-Juel1)130620$$aDittmann, R.$$b7
000826338 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.6b12706$$gVol. 9, no. 1, p. 1086 - 1092$$n1$$p1086 - 1092$$tACS applied materials & interfaces$$v9$$x1944-8252$$y2017
000826338 8564_ $$uhttps://juser.fz-juelich.de/record/826338/files/acsami.6b12706.pdf$$yRestricted
000826338 8564_ $$uhttps://juser.fz-juelich.de/record/826338/files/acsami.6b12706.gif?subformat=icon$$xicon$$yRestricted
000826338 8564_ $$uhttps://juser.fz-juelich.de/record/826338/files/acsami.6b12706.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000826338 8564_ $$uhttps://juser.fz-juelich.de/record/826338/files/acsami.6b12706.jpg?subformat=icon-180$$xicon-180$$yRestricted
000826338 8564_ $$uhttps://juser.fz-juelich.de/record/826338/files/acsami.6b12706.jpg?subformat=icon-640$$xicon-640$$yRestricted
000826338 8564_ $$uhttps://juser.fz-juelich.de/record/826338/files/acsami.6b12706.pdf?subformat=pdfa$$xpdfa$$yRestricted
000826338 909CO $$ooai:juser.fz-juelich.de:826338$$pVDB
000826338 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b0$$kFZJ
000826338 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b6$$kFZJ
000826338 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b7$$kFZJ
000826338 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130717$$aForschungszentrum Jülich$$b1$$kFZJ
000826338 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000826338 9141_ $$y2017
000826338 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826338 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826338 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000826338 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2015
000826338 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826338 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826338 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826338 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826338 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826338 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000826338 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2015
000826338 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000826338 980__ $$ajournal
000826338 980__ $$aVDB
000826338 980__ $$aI:(DE-Juel1)PGI-7-20110106
000826338 980__ $$aUNRESTRICTED