000826348 001__ 826348
000826348 005__ 20210129225603.0
000826348 0247_ $$2doi$$a10.1088/0953-8984/28/43/434001
000826348 0247_ $$2ISSN$$a0953-8984
000826348 0247_ $$2ISSN$$a1361-648X
000826348 0247_ $$2WOS$$aWOS:000384085600001
000826348 037__ $$aFZJ-2017-00576
000826348 082__ $$a530
000826348 1001_ $$0P:(DE-HGF)0$$aPertram, Tobias$$b0
000826348 245__ $$aPhthalocyanine adsorption on Au(1 1 0): 1D ordering and adaptive reconstruction
000826348 260__ $$aBristol$$bIOP Publ.$$c2016
000826348 3367_ $$2DRIVER$$aarticle
000826348 3367_ $$2DataCite$$aOutput Types/Journal article
000826348 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484725972_22330
000826348 3367_ $$2BibTeX$$aARTICLE
000826348 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826348 3367_ $$00$$2EndNote$$aJournal Article
000826348 520__ $$aThe adsorption of metal-free phthalocyanine molecules on an anisotropic Au(1 1 0)(1  ×  2) surface has been studied with ultraviolet (UV) photoemission, low-energy electron diffraction and low-temperature scanning tunneling microscopy. In all cases, the molecules form rows in the [1 $\bar{1}$  0] direction, i.e. along the troughs of the reconstructed substrates. However, depending on the exposure and adsorption temperature, the substrate maintains (1  ×  2)- or transforms into a (1  ×  3)-reconstruction, and the molecular separation along the rows shrink from six to five times the Au–Au interatomic distance. The results are in agreement with previous density functional theory (DFT) calculations.
000826348 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000826348 588__ $$aDataset connected to CrossRef
000826348 7001_ $$0P:(DE-Juel1)145323$$aMoors, Marco$$b1
000826348 7001_ $$0P:(DE-HGF)0$$aWandelt, Klaus$$b2$$eCorresponding author
000826348 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/28/43/434001$$gVol. 28, no. 43, p. 434001 -$$n43$$p434001 -$$tJournal of physics / Condensed matter$$v28$$x1361-648X$$y2016
000826348 8564_ $$uhttps://juser.fz-juelich.de/record/826348/files/Pertram_2016_J._Phys.__Condens._Matter_28_434001.pdf$$yRestricted
000826348 8564_ $$uhttps://juser.fz-juelich.de/record/826348/files/Pertram_2016_J._Phys.__Condens._Matter_28_434001.pdf?subformat=pdfa$$xpdfa$$yRestricted
000826348 909CO $$ooai:juser.fz-juelich.de:826348$$pVDB
000826348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145323$$aForschungszentrum Jülich$$b1$$kFZJ
000826348 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000826348 9141_ $$y2016
000826348 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826348 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2015
000826348 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826348 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826348 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826348 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000826348 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000826348 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826348 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000826348 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000826348 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826348 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000826348 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826348 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000826348 980__ $$ajournal
000826348 980__ $$aVDB
000826348 980__ $$aUNRESTRICTED
000826348 980__ $$aI:(DE-Juel1)PGI-7-20110106