000826391 001__ 826391
000826391 005__ 20240313095011.0
000826391 037__ $$aFZJ-2017-00619
000826391 041__ $$aEnglish
000826391 1001_ $$0P:(DE-Juel1)168479$$aVoges, Nicole$$b0$$eCorresponding author
000826391 1112_ $$aHBP summit 2016$$cFlorence$$d2016-10-12 - 2016-10-15$$wItaly
000826391 245__ $$aEvaluation of spike sorting results
000826391 260__ $$c2016
000826391 3367_ $$033$$2EndNote$$aConference Paper
000826391 3367_ $$2BibTeX$$aINPROCEEDINGS
000826391 3367_ $$2DRIVER$$aconferenceObject
000826391 3367_ $$2ORCID$$aCONFERENCE_POSTER
000826391 3367_ $$2DataCite$$aOutput Types/Conference Poster
000826391 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1485174811_18865$$xOther
000826391 502__ $$cUniklinik Koeln
000826391 520__ $$aIn Parkinson’s disease (PD) the STN plays an important role in the formation of pathological oscillatoryactivity within the basal ganglia-cortex loop. The primary measure to reveal such oscillations is the localfield potential (LFP). While it is assumed that the LFP reflects synaptic input to groups of neurons, therelationship between this population signal and the single neuron activity is still a matter of debate [1, 2].Our long-term goals are to investigate the spike-LFP relationship in STN recordings obtained during deepbrain stimulation surgery, as well as to assess the amount of synchrony between individual neurons inorder to elucidate how oscillations on the population level translate to neuronal synchrony. A critical step toachieve this goal is to correctly isolate the spiking activity of single units in extracellular STN recordings fromParkinson patients measured with a Ben Gun five channel micro-marcro-electrode holder. We employed anumber of spike sorting algorithms [e.g., 3] and found that different spike sorting methods yield inconsistentresults. We quantify these differences by the number of detected single units and the individual assignmentof spikes to the detected units. Our long-term goal critically depends on the spike sorting quality [4], as,e.g., spike synchrony evaluation depends on the percentage of correctly identified spikes [5]. Hence, weintroduced two additional approaches. Firstly, we developed a set of tools that estimates the isolationquality of single units [6]. These tools calculate the similarity of the spike shapes within one unit comparedto other units. Secondly, we generated synthetic ground truth spike data of mixed units with the statisticalfeatures of the STN recordings: We selected the two most different spike shapes which we combinedlinearly to obtain pairs of spikes with a controlled dissimilarity. Assuming Poisson spike rates we generatedspike trains by inserting such spike pairs into a noisy background obtained by phase shifting the originalnoise. These data enable us to calibrate and verify our spike sorting results, i.e., to check if the number ofextracted units and the spike-to-unit assignment is correct. By use of these two approaches, we compareand evaluate various spike sorting methods to finally select and apply the most appropriate one for theanalysis of our STN recordings.
000826391 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000826391 536__ $$0G:(GEPRIS)147522227$$aDFG project 147522227 - Charakterisierung der effektiven Konnektivität motorischer Basalganglien-Kortex-Schleifen durch loklale Feldpotentiale im Nucelus Subthalamicus und EEG-Ableitungen bei Morbus Parkinson (147522227)$$c147522227$$x1
000826391 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x2
000826391 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x3
000826391 7001_ $$0P:(DE-HGF)0$$aSukiban$$b1
000826391 7001_ $$0P:(DE-Juel1)166067$$aPauli, Robin$$b2
000826391 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b3
000826391 7001_ $$0P:(DE-HGF)0$$aTimmerman$$b4
000826391 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b5
000826391 909CO $$ooai:juser.fz-juelich.de:826391$$popenaire$$pec_fundedresources$$pVDB
000826391 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168479$$aForschungszentrum Jülich$$b0$$kFZJ
000826391 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166067$$aForschungszentrum Jülich$$b2$$kFZJ
000826391 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b3$$kFZJ
000826391 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b5$$kFZJ
000826391 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000826391 9141_ $$y2016
000826391 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000826391 920__ $$lno
000826391 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000826391 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000826391 980__ $$aposter
000826391 980__ $$aVDB
000826391 980__ $$aUNRESTRICTED
000826391 980__ $$aI:(DE-Juel1)INM-6-20090406
000826391 980__ $$aI:(DE-Juel1)IAS-6-20130828
000826391 981__ $$aI:(DE-Juel1)IAS-6-20130828