000826404 001__ 826404
000826404 005__ 20240712112828.0
000826404 0247_ $$2doi$$a10.1016/j.electacta.2016.12.120
000826404 0247_ $$2ISSN$$a0013-4686
000826404 0247_ $$2ISSN$$a1873-3859
000826404 0247_ $$2WOS$$aWOS:000393502500024
000826404 0247_ $$2altmetric$$aaltmetric:21832278
000826404 037__ $$aFZJ-2017-00632
000826404 082__ $$a540
000826404 1001_ $$0P:(DE-Juel1)162243$$aDurmus, Yasin Emre$$b0$$eCorresponding author$$ufzj
000826404 245__ $$aLong run discharge, performance and efficiency of primary Silicon–air cells with alkaline electrolyte
000826404 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000826404 3367_ $$2DRIVER$$aarticle
000826404 3367_ $$2DataCite$$aOutput Types/Journal article
000826404 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484748634_22332
000826404 3367_ $$2BibTeX$$aARTICLE
000826404 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826404 3367_ $$00$$2EndNote$$aJournal Article
000826404 520__ $$aSi–air batteries, unlike other resource efficient metal–air batteries that were subject of investigations for quite a long time, came to the focus of research only recently. When operated with alkaline electrolyte, severe limitations of the discharge capacities were reported, which were attributed to a passivation layer on the anode. As a consequence, only small fractions of the surface from Si-anodes could be used for discharge. The objective of the present work is to reconsider the discharge behavior of Si–air cells with KOH electrolyte and to point out how a discharge process can be put forward until the complete anode is exhausted. Operating Si–air cells with alkaline electrolyte causes substantial corrosion, which produces also hydrogen gas as a reaction product. Moreover, along with the dissolution of Si in KOH, condensation of silicate structures in the electrolyte has been observed. Both effects accelerate electrolyte loss in the cell. Therefore, appropriately balancing the electrolyte supply of the Si–air cell is a precondition for ongoing discharge. Specifically, cells with As-doped Si-wafer anodes with 0.6 mm and 3.0 mm thickness were discharged in 5 M KOH electrolyte at current densities up to 0.05 mA/cm2 for 260 and 1100 hours, respectively. The drawback is that a minimum amount of electrolyte is required in order not to exceed 4 M Si content, which otherwise leads to a gelation of the electrolyte. Although a considerable fraction of the anode material is not transformed to electrical energy owing to corrosion, specific energies up to 140 Wh/kg (for 1100 h) related to the total anode mass loss were realized.
000826404 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000826404 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000826404 588__ $$aDataset connected to CrossRef
000826404 7001_ $$0P:(DE-Juel1)161361$$aAslanbas, Özgür$$b1$$ufzj
000826404 7001_ $$0P:(DE-Juel1)164222$$aKayser, Steffen$$b2$$ufzj
000826404 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b3$$ufzj
000826404 7001_ $$0P:(DE-Juel1)167581$$aHausen, Florian$$b4$$ufzj
000826404 7001_ $$0P:(DE-HGF)0$$ade Haart, L. G. J.$$b5
000826404 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b6$$ufzj
000826404 7001_ $$0P:(DE-HGF)0$$aEin-Eli, Yair$$b7
000826404 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b8$$ufzj
000826404 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b9$$ufzj
000826404 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2016.12.120$$gVol. 225, p. 215 - 224$$p215 - 224$$tElectrochimica acta$$v225$$x0013-4686$$y2017
000826404 8564_ $$uhttps://juser.fz-juelich.de/record/826404/files/1-s2.0-S0013468616326792-main.pdf$$yRestricted
000826404 8564_ $$uhttps://juser.fz-juelich.de/record/826404/files/1-s2.0-S0013468616326792-main.gif?subformat=icon$$xicon$$yRestricted
000826404 8564_ $$uhttps://juser.fz-juelich.de/record/826404/files/1-s2.0-S0013468616326792-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000826404 8564_ $$uhttps://juser.fz-juelich.de/record/826404/files/1-s2.0-S0013468616326792-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000826404 8564_ $$uhttps://juser.fz-juelich.de/record/826404/files/1-s2.0-S0013468616326792-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000826404 8564_ $$uhttps://juser.fz-juelich.de/record/826404/files/1-s2.0-S0013468616326792-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000826404 909CO $$ooai:juser.fz-juelich.de:826404$$pVDB
000826404 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162243$$aForschungszentrum Jülich$$b0$$kFZJ
000826404 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162243$$aRWTH Aachen$$b0$$kRWTH
000826404 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161361$$aForschungszentrum Jülich$$b1$$kFZJ
000826404 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)161361$$aRWTH Aachen$$b1$$kRWTH
000826404 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164222$$aForschungszentrum Jülich$$b2$$kFZJ
000826404 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)164222$$aRWTH Aachen$$b2$$kRWTH
000826404 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b3$$kFZJ
000826404 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167581$$aForschungszentrum Jülich$$b4$$kFZJ
000826404 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)167581$$aRWTH Aachen$$b4$$kRWTH
000826404 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b6$$kFZJ
000826404 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b6$$kRWTH
000826404 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aDepartment of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, Israel $$b7
000826404 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b8$$kFZJ
000826404 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b8$$kRWTH
000826404 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b9$$kFZJ
000826404 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000826404 9141_ $$y2017
000826404 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000826404 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2015
000826404 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826404 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826404 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000826404 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826404 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826404 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826404 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826404 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826404 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826404 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826404 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000826404 920__ $$lyes
000826404 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000826404 980__ $$ajournal
000826404 980__ $$aVDB
000826404 980__ $$aI:(DE-Juel1)IEK-9-20110218
000826404 980__ $$aUNRESTRICTED
000826404 981__ $$aI:(DE-Juel1)IET-1-20110218