001     826404
005     20240712112828.0
024 7 _ |a 10.1016/j.electacta.2016.12.120
|2 doi
024 7 _ |a 0013-4686
|2 ISSN
024 7 _ |a 1873-3859
|2 ISSN
024 7 _ |a WOS:000393502500024
|2 WOS
024 7 _ |a altmetric:21832278
|2 altmetric
037 _ _ |a FZJ-2017-00632
082 _ _ |a 540
100 1 _ |a Durmus, Yasin Emre
|0 P:(DE-Juel1)162243
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Long run discharge, performance and efficiency of primary Silicon–air cells with alkaline electrolyte
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1484748634_22332
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Si–air batteries, unlike other resource efficient metal–air batteries that were subject of investigations for quite a long time, came to the focus of research only recently. When operated with alkaline electrolyte, severe limitations of the discharge capacities were reported, which were attributed to a passivation layer on the anode. As a consequence, only small fractions of the surface from Si-anodes could be used for discharge. The objective of the present work is to reconsider the discharge behavior of Si–air cells with KOH electrolyte and to point out how a discharge process can be put forward until the complete anode is exhausted. Operating Si–air cells with alkaline electrolyte causes substantial corrosion, which produces also hydrogen gas as a reaction product. Moreover, along with the dissolution of Si in KOH, condensation of silicate structures in the electrolyte has been observed. Both effects accelerate electrolyte loss in the cell. Therefore, appropriately balancing the electrolyte supply of the Si–air cell is a precondition for ongoing discharge. Specifically, cells with As-doped Si-wafer anodes with 0.6 mm and 3.0 mm thickness were discharged in 5 M KOH electrolyte at current densities up to 0.05 mA/cm2 for 260 and 1100 hours, respectively. The drawback is that a minimum amount of electrolyte is required in order not to exceed 4 M Si content, which otherwise leads to a gelation of the electrolyte. Although a considerable fraction of the anode material is not transformed to electrical energy owing to corrosion, specific energies up to 140 Wh/kg (for 1100 h) related to the total anode mass loss were realized.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Aslanbas, Özgür
|0 P:(DE-Juel1)161361
|b 1
|u fzj
700 1 _ |a Kayser, Steffen
|0 P:(DE-Juel1)164222
|b 2
|u fzj
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 3
|u fzj
700 1 _ |a Hausen, Florian
|0 P:(DE-Juel1)167581
|b 4
|u fzj
700 1 _ |a de Haart, L. G. J.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Granwehr, Josef
|0 P:(DE-Juel1)162401
|b 6
|u fzj
700 1 _ |a Ein-Eli, Yair
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 8
|u fzj
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 9
|u fzj
773 _ _ |a 10.1016/j.electacta.2016.12.120
|g Vol. 225, p. 215 - 224
|0 PERI:(DE-600)1483548-4
|p 215 - 224
|t Electrochimica acta
|v 225
|y 2017
|x 0013-4686
856 4 _ |u https://juser.fz-juelich.de/record/826404/files/1-s2.0-S0013468616326792-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826404/files/1-s2.0-S0013468616326792-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826404/files/1-s2.0-S0013468616326792-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826404/files/1-s2.0-S0013468616326792-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826404/files/1-s2.0-S0013468616326792-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826404/files/1-s2.0-S0013468616326792-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:826404
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162243
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)162243
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161361
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)161361
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)164222
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)164222
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)167581
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)167581
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)162401
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)162401
910 1 _ |a Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)157700
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELECTROCHIM ACTA : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21