000826474 001__ 826474
000826474 005__ 20210129225622.0
000826474 0247_ $$2doi$$a10.1109/SNW.2016.7577995
000826474 037__ $$aFZJ-2017-00699
000826474 1001_ $$0P:(DE-HGF)0$$aHavel, V.$$b0
000826474 1112_ $$a2016 IEEE Silicon Nanoelectronics Workshop (SNW)$$cHonolulu$$d2016-06-12 - 2016-06-13$$wHI
000826474 245__ $$aUltrafast switching in Ta2O5-based resistive memories
000826474 260__ $$bIEEE$$c2016
000826474 300__ $$a1
000826474 3367_ $$2ORCID$$aCONFERENCE_PAPER
000826474 3367_ $$033$$2EndNote$$aConference Paper
000826474 3367_ $$2BibTeX$$aINPROCEEDINGS
000826474 3367_ $$2DRIVER$$aconferenceObject
000826474 3367_ $$2DataCite$$aOutput Types/Conference Paper
000826474 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1484925606_27111
000826474 500__ $$aISBN 978-1-5090-0726-4
000826474 520__ $$aTo understand the switching mechanism in resistive switching memories it is important to study the switching kinetics over several orders in time. One open question is the upper limit of the switching speed. In this study, we present a switching kinetics study on Ta2O5-based resistive memories that spans over 15 order of magnitude in time in a single device. Using coplanar waveguide (CPW) devices switching times less than 35 ps are realized, which are still limited by the measurement setup. In addition, the switching event could be unraveled in the sub-ns regime by analyses of the current transients. The switching kinetics of the CPW devices show the same characteristic as 80 × 80 nm2 crossbar devices. Furthermore, we demonstrate multilevel switching with ultrafast sub-ns pulses by variation of the voltage amplitude.
000826474 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000826474 588__ $$aDataset connected to CrossRef Conference
000826474 7001_ $$0P:(DE-HGF)0$$aFleck, K.$$b1
000826474 7001_ $$0P:(DE-Juel1)144776$$aRosgen, B.$$b2
000826474 7001_ $$0P:(DE-Juel1)145504$$aRana, V.$$b3
000826474 7001_ $$0P:(DE-Juel1)158062$$aMenzel, S.$$b4$$ufzj
000826474 7001_ $$0P:(DE-HGF)0$$aBottger, U.$$b5
000826474 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b6$$ufzj
000826474 773__ $$a10.1109/SNW.2016.7577995
000826474 8564_ $$uhttps://juser.fz-juelich.de/record/826474/files/07577995.pdf$$yRestricted
000826474 8564_ $$uhttps://juser.fz-juelich.de/record/826474/files/07577995.gif?subformat=icon$$xicon$$yRestricted
000826474 8564_ $$uhttps://juser.fz-juelich.de/record/826474/files/07577995.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000826474 8564_ $$uhttps://juser.fz-juelich.de/record/826474/files/07577995.jpg?subformat=icon-180$$xicon-180$$yRestricted
000826474 8564_ $$uhttps://juser.fz-juelich.de/record/826474/files/07577995.jpg?subformat=icon-640$$xicon-640$$yRestricted
000826474 8564_ $$uhttps://juser.fz-juelich.de/record/826474/files/07577995.pdf?subformat=pdfa$$xpdfa$$yRestricted
000826474 909CO $$ooai:juser.fz-juelich.de:826474$$pVDB
000826474 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b4$$kFZJ
000826474 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b6$$kFZJ
000826474 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000826474 9141_ $$y2016
000826474 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000826474 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000826474 980__ $$acontrib
000826474 980__ $$aVDB
000826474 980__ $$aUNRESTRICTED
000826474 980__ $$aI:(DE-Juel1)PGI-7-20110106