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ARTICLE INFO ABSTRACT
AﬁiC’f—’ history: Routine diagnostics and treatment monitoring of brain tumors is usually based on contrast-enhanced MRI. How-
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rosurgical resection, chemoradiation, alkylating chemotherapy, radiosurgery, and/or immunotherapy may be
limited. Metabolic imaging using PET can provide relevant additional information on tumor metabolism, which
allows for more accurate diagnostics especially in clinically equivocal situations. This review article focuses pre-
dominantly on the amino acid PET tracers ''C-methyl-L-methionine (MET), O-(2-['®F]fluoroethyl)-L-tyrosine

{)(?T/words. (FET) and 3,4-dihydroxy-6-['®F]-fluoro-L-phenylalanine (FDOPA) and summarizes investigations regarding
FET monitoring of brain tumor therapy.
MET © 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
FDOPA (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction lived positron-emitting isotopes at micromolar or nanomolar concen-

In general Oncology as well as in Neuro-Oncology, the evaluation
of treatment response or monitoring of tumor therapy is of para-
mount importance. In particular, the early identification of non-re-
sponse allows the termination of an ineffective therapy to avoid
possible side effects, e.g., bone marrow depression, fatigue, nausea,
and vomiting, and therefore to maintain or even improve life-quali-
ty. Furthermore, the early identification of non-response allows an
earlier treatment change. For example, in the event of chemotherapy
resistance, a switch to another chemotherapeutic agent is possible
before bone marrow reserves are exhausted. Moreover, identifica-
tion of treatment failure may help reduce costs. This is highly rele-
vant because the expense of newer systemic treatment options
(e.g., bevacizumab) is considerably higher than conventional
alkylating chemotherapy (e.g., lomustine).

Additionally, following radiotherapy and temozolomide chemother-
apy for newly diagnosed glioblastoma patients and antiangiogenic
drugs such as bevacizumab in pretreated patients, “pseudoprogression”
and “pseudoresponse” have been described (Brandes et al., 2008;
Brandsma and van den Bent, 2009). These phenomena may complicate
the assessment of treatment effect. Similarly, pseudoprogression or de-
layed responses may occur during immunotherapy of brain metastasis
by blocking immune checkpoints such as CTLA-4 (cytotoxic T lympho-
cyte-associated antigen 4) using ipilimumab and PD-1 (programmed
cell death 1 receptor) using pembrolizumab or nivolumab (Okada et
al., 2015; Preusser et al., 2015; Wolchok et al., 2009). Importantly, fol-
lowing immunotherapy, long-term survival and tumor regression can
still occur after initial disease progression or even after the appearance
of new lesions (Okada et al,, 2015).

For decades, in patients with brain tumors, changes of contrast
enhancement extent on MRI are traditionally used as an indicator
of therapy response or tumor relapse (Macdonald et al., 1990; Wen
et al., 2010). However, contrast enhancement resulting from in-
creased blood-brain barrier (BBB) permeability is nonspecific and
may not always be an accurate surrogate of neoplastic tissue,
tumor extent or treatment effect (Ahluwalia and Wen, 2011;
Dhermain et al., 2010; Kumar et al., 2000).

In order to overcome the limitations of the assessment of tumor
response to antiangiogenic treatment by evaluation of contrast-
enhancement changes only (according to the Macdonald criteria),
the Response Assessment in Neuro-Oncology (RANO) group suggested
in 2010 new recommendations for evaluating response (Wen et al.,
2010). In particular, following anti-angiogenic drug treatment, FLAIR
or T2 signal hyperintensity was recommended as a surrogate marker
for nonenhancing tumor to help determine tumor progression, and
thus nonenhancing FLAIR or T2 signal alterations were included as
criteria for determining tumor response or progression (“non-enhanc-
ing tumor progression”) (Wen et al., 2010).

However, these criteria do not provide quantitative values of FLAIR
or T2 signal change for the diagnosis of tumor progression. Various dif-
ferential diagnoses such as tumor-related edema, radiation injury, de-
myelination, ischemia, and infection can result in hyperintense FLAIR
or T2 signal hyperintensity, which is difficult to distinguish from
nonenhancing tumor (Ahluwalia and Wen, 2011). Consequently, alter-
native diagnostic methods are necessary to improve the identification of
treatment response.

Positron-Emission-Tomography (PET) is one of the most promising
techniques for the imaging of specific molecular processes in vivo.
This method uses biologically active molecules labeled with short-

trations. Molecular imaging using PET may provide relevant additional
information on tumor metabolism, and may be helpful in clinical deci-
sion-making, especially in the case of ambiguous MRI findings following
neurooncological treatment (Fig. 1). Further strengths of PET imaging is
that the image acquisition can be standardized, the insensibility to sus-
ceptibility artifacts and the relatively uncomplicated post-processing for
static images.

This review article focuses predominantly on the amino acid PET
tracers ''C-methyl-L-methionine (MET), O-(2-['®F]fluoroethyl)-L-tyro-
sine (FET) and 3,4-dihydroxy-6-[ '®F]-fluoro-L-phenylalanine (FDOPA)
and summarizes investigations regarding monitoring of brain tumor
therapy.

2. Most relevant pet tracers for (neuro-) oncological imaging

The classic and most common PET tracer for oncologic imaging has
traditionally been '®F-2-fluoro-2-deoxy-p-glucose (FDG). FDG is accu-
mulated in the majority of tumors due to increased energy demand
and consequently elevated glucose metabolism. FDG uptake has been
well characterized for extracranial tumors, and also has been applied
to brain tumor imaging for many years. The relationship of FDG uptake
to tumor glioma grade and prognosis has been reported in several stud-
ies (Herholz et al., 2012). As newer PET tracers have become available,
the use of FDG for imaging in Neuro-Oncology has declined, in part
due to several important limitations. These include the high rate of glu-
cose metabolism in normal brain parenchyma resulting in diminished
signal-to-noise ratio for brain tumors. Another problem with FDG is
the high tracer uptake in inflammatory cells, which can occur in a vari-
ety of disease processes and can be independent of tumor growth or
response.

Radiolabeled amino acids have been used in neurooncological prac-
tice since 1983 (Bergstrom et al., 1983). The most experience for this
class of PET tracers for brain tumor imaging has been gained with
MET. This tracer is an essential amino acid labeled with the positron-
emitting isotope carbon-11, which has a half-life of 20 min (Galldiks
et al., 2015b; Herholz et al., 2012). This relatively short half-life limits
the use of MET to PET centers with an on-site cyclotron unit. More re-
cently, amino acid tracers labeled with positron emitters that have lon-
ger half-lives have been synthesized. This has resulted in improved
distribution, efficiency and cost-effectiveness (Huang and McConathy,
2013). For example, FET was developed in the late 1990s and is an
18F_Jabeled amino acid tracer (half-life, 110 min) resulting in logistic ad-
vantages for clinical practice compared to MET (Langen et al., 2006;
Wester et al.,, 1999). The use of FET has grown rapidly in recent years,
especially in Western Europe. Clinical results in brain tumors with PET
using MET and FET appear similar (Grosu et al., 2011; Langen et al.,
2003; Weber et al., 2000). Switzerland was the first country to approve
FET PET as a medical drug in 2014 (Swissmedic, 2014). Another '8F-
labeled amino acid analogue FDOPA, which was primarily developed
to measure dopamine synthesis in the basal ganglia, has also increasing-
ly been used as a tracer for brain tumor imaging (Becherer et al., 2003).
FDOPA is currently approved for characterization of presynaptic dopa-
minergic activity in patients with Parkinsonian syndromes in the United
States and Western Europe. The increased uptake of MET, FET and
FDOPA in gliomas and brain metastases appears to be caused predomi-
nantly by increased transport via the amino acid transport system L for
large neutral amino acids namely the subtypes LAT1 and LAT2 (Okubo
et al.,, 2010; Papin-Michault et al., 2016; Wiriyasermkul et al., 2012;
Youland et al., 2013). A feature that distinguishes FET from MET and
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Fig. 1. Patient with a newly diagnosed glioblastoma. After resection and chemoradiation with temozolomide, MR and FET PET images show residual tumor in the left frontal lobe (baseline
imaging for radiotherapy planning) with complete metabolic response 10 weeks after radiotherapy. The residual contrast-enhancing lesion is metabolically inactive (arrows) indicating a
post-treatment effect. This is confirmed 22 months later with complete resolution of this lesion.

FDOPA is the high metabolic stability of FET. After the transport via L-
type amino acid transporters into tumor tissue, it has been demonstrat-
ed that MET and FDOPA show some metabolic degradation and incorpo-
ration into protein or participation in other metabolic pathways
(Singhal et al., 2008), whereas FET is not metabolized (Langen et al.,
2003). Furthermore, it has been shown that overexpression of LAT1 is
closely correlated with a malignant phenotype and proliferation of glio-
mas (Haining et al., 2012).

In addition to static images, dynamic FET PET data can be acquired
dynamically, allowing for the ability to characterize the temporal pat-
tern of FET uptake by deriving a time-activity curve (TAC). It has been
demonstrated that the configuration of TAC may contain additional bio-
logical information, which may be helpful for glioma grading (Albert et
al., 2016b; Calcagni et al., 2011), the differentiation of both glioma and
brain metastasis recurrence from radiation-induced changes (Ceccon
et al., 2016; Galldiks et al., 2015a; Galldiks et al., 2015c¢) or the prognos-
tication of untreated gliomas (Jansen et al., 2014; Jansen et al., 2015).
For example, TACs of FET uptake in high-grade gliomas are character-
ized by an early peak of tracer uptake followed by a constant decent,
whereas low-grade gliomas usually show a steadily increasing TAC
(Popperl et al., 2007). Since this phenomenon has not observed for
other amino acid tracers such as MET or FDOPA (Kratochwil et al.,
2014; Moulin-Romsée et al., 2007), and it remains to be elucidated
whether dynamic MET and FDOPA can contribute significantly to the
characterization of brain tumors.

The value of other amino acid PET tracers such as o-[!'C]-methyl-L-
tryptophan (AMT) and ['®F]Fluciclovine (FACBC) as well as glutamine-
based amino acid PET tracers has been evaluated in glioma patients in
terms of tumor delineation (Kamson et al., 2013; Kondo et al., 2016;
Venneti et al,, 2015), prognostication (Kamson et al,, 2014) and the dif-
ferentiation of tumor recurrence from radiation injury (Alkonyi et al.,
2012). The observed findings are promising and suggest that these
tracers have the potential to monitor treatment effects. However, the
number of examined subjects is currently low and should be increased
by subsequent studies.

Besides FDG and radiolabeled amino acids, several other radio-
pharmaceuticals have been used to image brain tumors, and can
help identify malignant processes in tumors. For instance, the thymi-
dine nucleoside analogue 3’-deoxy-3'-'8F-fluorothymidine (FLT),
the substrate for thymidine kinase-1, reflects cell proliferation. Pre-
vious studies suggest that FLT is a promising tool for glioma

detection and grading (Chen et al., 2005; Jacobs et al., 2005) and is
able to predict improved survival after bevacizumab therapy (Chen
etal.,, 2007; Wardak et al., 2014). Unfortunately, FLT uptake is depen-
dent on disruption of the blood-brain barrier, hampering its clinical
value in Neuro-Oncology (Dhermain et al., 2010).

Imaging of hypoxia in brain tumors has been performed with the
tracer '8F-Fluoromisonidazole (FMISO) (Lee and Scott, 2007). FMISO
enters tumor cells by passive diffusion and becomes trapped in cells
with reduced tissue oxygen partial pressure by nitroreductase enzymes.
Clinically this tracer is of interest for the identification of hypoxic tumor
areas, which are thought to be more resistant to irradiation (Spence et
al., 2008), as well as a trigger for neoangiogenesis. A prospective study
suggested that abnormal tumor vasculature and hypoxia, as measured
with MRI and FMISO PET, have a negative impact on survival in patients
with newly diagnosed glioblastoma (Gerstner et al., 2016). However, to
date FMISO has predominantly been used in a preclinical setting
(Suchorska et al., 2014). Furthermore, FMISO is relatively lipophilic
and has a slow clearance from white matter, resulting in a low target-
to-background ratio.

Another interesting PET target is the translocator protein (TSPO), a
mitochondrial membrane protein that has been used as biomarker for
neuroinflammation. TSPO is highly expressed in activated microglia,
macrophages and neoplastic cells. Imaging with the TSPO ligand ''C-
(R)PK11195 demonstrates increased binding in high-grade gliomas
compared to low-grade gliomas and normal brain parenchyma (Su et
al, 2013; Suetal,, 2015). However, 1'C-(R)PK11195, like MET, is limited
to PET centers with a cyclotron due to its short half-life. More recently,
the TSPO ligand '8F-DPA-714 labeled with '®F (half-life, 110 min) has
been synthesized (Winkeler et al., 2012) and evaluated in glioma ani-
mal models (Awde et al., 2013). Results in human glioma patients are
pending.

3. Local treatment options
3.1. Neurosurgical resection

To date, the spatial distribution of contrast enhancement on MRI is
frequently used to define the tumor extent. Furthermore, the area of
contrast enhancement is usually the target for stereotactic biopsy or
for local treatment options such as neurosurgical resection. Tumor re-
section is a key treatment option in Neuro-Oncology because it has
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been demonstrated that a complete tumor resection is associated with a
favorable outcome (Lacroix et al,, 2001; Stummer et al., 2006). Further-
more, the importance of resection is dependent on tumor type - for
some brain tumors, including multiple pediatric ones, complete remov-
al is the only hope for cure. For the assessment of residual tumor after
surgery, postoperative MRI within 24-72 h is commonly used. A com-
plete tumor resection is defined by the lack on nodular contrast en-
hancement following surgery (Albert et al., 1994).

3.1.1. PET-guided neurosurgical planning and resection

The addition of MET PET data for resection-guidance of anaplastic
gliomas and glioblastomas provides a target contour substantially dif-
ferent from that obtained by contrast enhancement MRI alone in
about 80% of cases (Pirotte et al., 2009). In line with this, a recent
study with 79 glioblastoma patients revealed that the metabolically ac-
tive tumor volume on FET PET images prior to histological diagnosis is
considerably larger than the volume of contrast enhancement (median
volumes, 23.8 ml vs. 13.5 ml) (Suchorska et al., 2015). Similar findings
could be observed in low-grade gliomas (Floeth et al., 2011). That biop-
sy-controlled study assessed the presurgical value of FET uptake, 5-
aminolevulinic acid (5-ALA) fluorescence and contrast enhancement.
5-ALA is a non-fluorescent prodrug that leads to intracellular accumula-
tion of fluorescent porphyrins in gliomas and is frequently used for in-
traoperative fluorescence-guided glioma resection. This can improve
patient survival (Stummer et al., 2006), but, in contrast to FET PET, 5-
ALA has a limited sensitivity for tumor tissue detection, especially in
low-grade gliomas (Floeth et al., 2011).

Regarding PET-guided neurosurgical resection, Pirotte and co-
workers showed that a complete resection of the tumor area with in-
creased MET uptake resulted in significantly longer survival of patients
with high-grade gliomas (Pirotte et al., 2009).

3.1.2. Postoperative evaluation of the extent of resection

A recent study suggests that findings on early postoperative MRI
(24-72 h) can be falsely positive (i.e., due to reactive changes, ischemia,
infarctions) or even falsely-negative, particularly when a 3T MR scanner
isused (Lescher et al., 2014). In line with Lescher et al,, a case series with
high-grade glioma patients (n = 25) compared the early postoperative
MRI performed within the first 72 h after surgery with an early FET PET
scan within the same time frame. FET PET was more sensitive than MRI
in 24% of cases in which MRI was falsely negative (wrongly indicating
complete response) as proven by histopathology or short-term follow-
up (Kldsner et al., 2015).

Moreover, the amount of residual tracer uptake in FET PET after sur-
gery/prior to chemoradiation of glioblastomas (FET PET performed
within 7-20 days after surgery) has a strong prognostic influence,
even after adjustment by multivariate survival analyses for the effects
of treatment, MGMT promoter methylation and other patient and
tumor-related factors (Piroth et al., 2011a; Poulsen et al., 2016;
Suchorska et al., 2015). These data indicate that resection of malignant
gliomas guided by amino acid PET may increase the amount of neoplas-
tic tissue removed, potentially improving patient outcome.

3.2. Radiotherapy

Similar to neurosurgical resection, radiotherapy is one of the
most important local treatment options and is the main treatment
component for both newly diagnosed and relapsed brain tumors.
The radiation dose can be fractionated, directly placed inside the
tumor (i.e., brachytherapy) or can be applied as a single high dose
fraction (i.e., radiosurgery).

3.2.1. Pseudoprogression after chemoradiation

Since the introduction of chemoradiation with temozolomide as the
current standard of care for patients with glioblastoma, there has been
an increasing awareness of progressive enhancing lesions on MRI,

which are not related to tumor progression, but which are due to treat-
ment effect, i.e., pseudoprogression. Pseudoprogression is typically
regarded as a phenomenon of the first 12 weeks after radiotherapy
(Brandsma et al., 2008; Brandsma and van den Bent, 2009; Wen et al.,
2010) and this time-dependent definition has been incorporated into
the RANO criteria (Wen et al., 2010). Although pseudoprogression
most often occurs within the first 12 weeks after radiochemotherapy
completion, some cases occurring later have been observed, particularly
after radiochemotherapy using temozolomide in combination with
lomustine (Kruser et al., 2013; Stuplich et al,, 2012). Compared to con-
ventional MRI, more recent studies with a larger glioblastoma patient
cohort reported a diagnostic accuracy of FET PET of at least 85% for dif-
ferentiating both typical (within 12 weeks) and late (>12 weeks)
pseudoprogression after radiochemotherapy completion from true
tumor progression (Galldiks et al., 2015a; Kebir et al., 2016a).

3.2.2. Fractionated external beam radiation therapy

A prospective study assessed the prognostic value of early changes of
FET uptake 6-8 weeks after postoperative radiochemotherapy in glio-
blastoma patients (Galldiks et al., 2012b; Piroth et al., 2011b). PET re-
sponders with a decrease in the tumor/brain ratio of >10% had a
significantly longer disease-free and overall survival than patients
with stable or increasing tracer uptake after radiochemotherapy. How-
ever, the kinetic analysis of FET uptake was not helpful in the evaluation
of treatment effects to radiochemotherapy (Piroth et al., 2013).

3.2.3. Brachytherapy

Amino acid PET has also been investigated as a way to assess re-
sponse or failure of iodine-125 seed brachytherapy. For instance,
12 months after brachytherapy in patients with low-grade glioma,
MET uptake was significantly reduced, whereas glucose metabolism
as assessed by FDG PET was unchanged (Voges et al., 1997; Wiirker
et al.,, 1996). In a more recent FET PET study, tumor/brain ratios, up-
take kinetics and PET tumor volumes were evaluated for their value
in monitoring stereotactic brachytherapy using iodine-125 seeds
(Jansen et al., 2013). In that study, FET PET correctly differentiated
with a high diagnostic accuracy late posttherapeutic effects after
6 months from local tumor progression in patients with recurrent
high-grade glioma.

3.2.4. Radiosurgery

In view of the demographic changes with an increasing elderly pop-
ulation as well as of a wider spectrum of diagnostic measurements and
therapy options for extracranial tumors (e.g., biomarker-guided patient
stratification, whole-genome sequencing, targeted therapy, immuno-
therapy etc.) resulting in an improvement of prognosis, an increasing
number of patients diagnosed with brain metastasis is expected. Besides
neurosurgical resection, various types of radiation therapy such as ra-
diosurgery, brachytherapy, and whole-brain radiation therapy are com-
monly used to treat secondary brain neoplasms.

However, following radiotherapy, and in particular after radio-
surgery, conventional MRI cannot reliably differentiate brain metas-
tasis recurrence or progression from radiation-induced changes
(e.g., radiation necrosis). In gliomas, radiation necrosis usually man-
ifests within 6 months after standard radiotherapy, occurring in ap-
proximately 5-25% of these patients (Kumar et al., 2000; Shah et
al., 2013). For patients with brain metastasis treated by radiosurgery,
a similar fraction of radiation necrosis (24% of 310 cerebral metasta-
ses) has been reported (Minniti et al., 2011), which may increase to
as high as 47%, depending on the irradiated volume receiving a spe-
cific radiation dose (Minniti et al., 2011).

Amino acid PET has been investigated as a problem-solving tool to
address this common problem in clinical practice. For instance, MET
PET may be effective in differentiating recurrent metastatic brain
tumor from radiation-induced changes. A simple semiquantitative re-
gions-of-interest analysis for the calculation of tumor/brain ratios
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demonstrated a sensitivity and specificity of 70-80% (Terakawa et al.,
2008; Tsuyuguchi et al.,, 2003). FDOPA PET has also been shown to dif-
ferentiate recurrent or progressive brain metastasis from radiation-
induced changes with high sensitivity (81%) and specificity (84%)
(Lizarraga et al., 2014). FDOPA PET has been compared to perfusion-
weighted MRI in a study of patients with brain metastases after stereo-
tactic radiosurgery. The accuracy of FDOPA PET was 91% and superior to
PWI MRI, which yielded an accuracy of 76% (Cicone et al., 2015) in iden-
tifying metastases. A similar diagnostic accuracy has also been reported
for FET PET: the combination of tumor/brain ratios with dynamic FET
parameters differentiated local brain metastasis recurrence from radia-
tion-induced changes with a sensitivity of 95% and specificity of 91%
(Galldiks et al., 2012c). And a similar diagnostic performance was
confirmed in a subsequent study with a greater number of patients
(n = 62) (Ceccon et al., 2016).

4. Systemic treatment options

In Neuro-Oncology, frequently used systemic treatment options are
cytotoxic chemotherapy and antiangiogenic therapy. Immunotherapy is
effective in patients with extracranial tumors and brain metastasis and
seems to be a promising systemic approach for malignant gliomas
(Berghoff and Preusser, 2016; Nduom et al., 2016), that is currently
under intensive investigation.

4.1. Alkylating chemotherapy

For patients treated with alkylating chemotherapy, MET and FET PET
may improve response assessment (Fig. 2). For instance, MET PET has
been evaluated as a means to assess the effects of alkylating chemother-
apy. Reliable monitoring of temozolomide and nitrosourea-based che-
motherapy (PCV scheme including procarbazine, CCNU and vincristine
or CCNU monotherapy) has been demonstrated in patients with recur-
rent high-grade glioma (Galldiks et al., 2006; Galldiks et al., 2010;
Galldiks and Langen, 2016; Herholz et al., 2003). Similarly, FET PET

baseline

FET PET

has been used to assess effects of temozolomide chemotherapy accord-
ing to the EORTC protocol 22,033-26,033 (application of 75 mg/m? tem-
ozolomide per day over 21 days in a 28-day cycle) (Wyss et al., 2009). In
that prospective study, changes of FET uptake were compared with
FLAIR signal alterations on MRI for evaluation of response to temozolo-
mide regime 21/28 in 11 patients with progressive nonenhancing low-
grade glioma (WHO Grade II). In responding patients, a reduction of the
metabolically active tumor volume after initiation of treatment could be
observed substantially earlier than volume reductions on FLAIR se-
quences, suggesting that FET PET may be an earlier marker of successful
treatment than standard MRI for this patient group. These findings de-
scribed by Wyss and colleagues were confirmed by a subsequent multi-
center PET study in a greater patient number (Roelcke et al., 2016).

4.2. Antiangiogenic therapy with bevacizumab

In 2010, the RANO group addressed the problem of pseudoresponse
related to antiangiogenic drugs and recommended new criteria for re-
sponse assessment by including FLAIR or T2 signal alterations as criteria
for determining tumor response or progression (“non-enhancing tumor
progression”) (Wen et al,, 2010).

However, the problem of accurately identifying non-enhancing
tumor remains, and thus amino acid PET has been investigated as
an alternative imaging method to assess treatment response to
antiangiogenic therapy (Reithmeier et al., 2013) (Fig. 3). Recent
studies and case reports indicate that FET and FDOPA PET are useful
in detection of pseudoresponse (Galldiks et al., 2012a; Galldiks et al.,
2013a; Galldiks et al., 2013b; Hutterer et al., 2011; Morana et al.,
2013). FET and FDOPA PET have also been used to predict a favorable
outcome in responders to bevacizumab (Galldiks et al., 2013b;
Hutterer et al., 2011; Schwarzenberg et al., 2014).

Additionally, the cost effectiveness of FET PET for therapy monitor-
ing of antiangiogenic therapy has been analyzed (Heinzel et al., 2013).
The data suggest that the additional use of FET PET in the management

Ny

‘ -
"‘—

TBRax
=24

after 2 cycles of temozolomide (5/28)

Fig. 2. A 67-year old glioblastoma patient prior to adjuvant chemotherapy (images on the left). After two cycles of temozolomide chemotherapy (images on the right), a clear decrease of
both the metabolically active tumor volume and tumor/brain ratios can be observed whereas conventional MRI shows no change of contrast enhancement (“stable disease” according to

RANO criteria).
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Baseline

8 months
after
bevacizumab

12 months
after
bevacizumab

Fig. 3. A 52-year-old patient with a progressive anaplastic oligoastrocytoma according to the WHO classification 2007 (top row). During follow-up after 8 and 12 months (middle and
bottom row) of biweekly bevacizumab therapy, MRI shows a markedly reduction of contrast enhancement and T2 hyperintensity. Correspondingly, FET PET shows a decrease of

metabolic activity by means of maximum tumor/brain ratio reduction (TBRyax).

of these patients have the potential to avoid overtreatment and corre-
sponding costs, as well as unnecessary patient side effects.

4.3, Immunotherapy with checkpoint Inhibitors

Identifying patients with pseudoprogression is crucial because a
successful treatment might be erroneously and prematurely
discontinued with a potentially negative influence on survival. Fol-
lowing treatment of melanoma patients with checkpoint inhibitors
such as ipilimumab, nivolumab, or pembrolizumab, in particular, de-
tecting pseudoprogression has become a major challenge, with ap-
proximately 10% incidence in clinical practice (Hodi et al., 2016). In
order to overcome this issue, a working group recommended in 2015
criteria for immunotherapy response assessment in Neuro-Oncology
(iRANO) based on clinical parameter and standard MRI findings
(Okada et al., 2015). The iRANO group noted that to date there is no
non-invasive method that can confidently identify pseudoprogression
in these patients. Thus, there remains an urgent need for the acquisition
of additional information potentially derived from advanced imaging
techniques. Recently a small retrospective pilot study addressed this
issue and showed for the first time the potential of FET PET to detect
pseudoprogression in patients with malignant melanoma brain metas-
tasis treated with ipilimumab or nivolumab (Kebir et al., 2016b).

5. Other experimental therapy approaches

Other experimental treatment options for gliomas such as convection-
enhanced delivery of paclitaxel, intracavitary radioimmunotherapy,
stereotaxy-guided laser-induced interstitial thermotherapy, as well as ad-
juvant maintenance therapy with imatinib in combination with hydroxy-
urea may also benefit from PET imaging. For instance several studies
(Galldiks et al., 2009; Galldiks et al., 2012d; Popperl et al., 2005; Popperl
et al., 2006) have shown that such treatment effects could be successfully
monitored by PET using MET and FET.

6. Outlook

The present literature in neuroimaging using PET highlights the abil-
ity of amino acid PET to quantify biological responses to treatment and
allows its application to monitor patients to identify early disease re-
lapse and response to treatment. The more widespread use of amino
acid PET for the management of patients with brain tumors has been
strongly recommended by the RANO group (Albert et al., 2016a;
Langen and Watts, 2016). However, therapy-monitoring PET data re-
main limited, necessitating more comprehensive (i.e., biopsy-con-
trolled), prospective studies in larger clinical cohorts. In particular,
continued progress is impeded by the lack of stereotactically guided bi-
opsy-controlled studies. Lastly, the diagnostic impact of amino acid PET
needs to be compared with a variety of promising advanced MR imaging
techniques to develop the most accurate and useful multi-modal bio-
markers possible.

References

Ahluwalia, M.S., Wen, P.Y., 2011. Antiangiogenic therapy for patients with glioblastoma:
current challenges in imaging and future directions. Expert. Rev. Anticancer. Ther.
11, 653-656.

Albert, FK,, Forsting, M., Sartor, K., Adams, H.P., Kunze, S., 1994. Early postoperative mag-
netic resonance imaging after resection of malignant glioma: objective evaluation of
residual tumor and its influence on regrowth and prognosis. Neurosurgery 34, 45-60.

Albert, N.L., Weller, M., Suchorska, B., Galldiks, N., Soffietti, R., Kim, M.M.,, la Fougere, C.,
Pope, W., Law, I, Arbizu, ]., Chamberlain, M.C., Vogelbaum, M., Ellingson, B.M., Tonn,
J.C., 2016a. Response assessment in Neuro-Oncology working group and European
Association for Neuro-Oncology recommendations for the clinical use of PET imaging
in gliomas. Neuro-Oncology 18, 1199-1208.

Albert, N.L., Winkelmann, 1., Suchorska, B., Wenter, V., Schmid-Tannwald, C., Mille, E.,
Todica, A., Brendel, M., Tonn, ].C., Bartenstein, P., la Fougere, C., 2016b. Early static
(18)F-FET-PET scans have a higher accuracy for glioma grading than the standard
20-40 min scans. Eur. J. Nucl. Med. Mol. Imaging 43, 1105-1114.

Alkonyi, B., Barger, G.R., Mittal, S., Muzik, O., Chugani, D.C,, Bahl, G., Robinette, N.L,
Kupsky, W.J., Chakraborty, P.K, Juhasz, C., 2012. Accurate differentiation of recurrent
gliomas from radiation injury by kinetic analysis of alpha-11C-methyl-L-tryptophan
PET. J. Nucl. Med. 53, 1058-1064.



392 N. Galldiks et al. / Neurolmage: Clinical 13 (2017) 386-394

Awde, AR, Boisgard, R., Theze, B., Dubois, A., Zheng, J., Dolle, F., Jacobs, A.H., Tavitian, B.,
Winkeler, A., 2013. The translocator protein radioligand 18F-DPA-714 monitors anti-
tumor effect of erufosine in a rat 9L intracranial glioma model. ]. Nucl. Med. 54,
2125-2131.

Becherer, A., Karanikas, G., Szabo, M., Zettinig, G., Asenbaum, S., Marosi, C., Henk, C.,
Waunderbaldinger, P., Czech, T., Wadsak, W., Kletter, K., 2003. Brain tumour imaging
with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur.
J. Nucl. Med. Mol. Imaging 30, 1561-1567.

Berghoff, A.S., Preusser, M., 2016. In search of a target: PD-1 and PD-L1 profiling across gli-
oma types. Neuro-Oncology 18 (10), 1331-1332.

Bergstrom, M., Collins, V.P., Ehrin, E., Ericson, K., Eriksson, L., Greitz, T., Halldin, C., von
Holst, H., Langstrom, B, Lilja, A, et al., 1983. Discrepancies in brain tumor extent as
shown by computed tomography and positron emission tomography using
[68Ga]EDTA, [11C]glucose, and [11C]methionine. J. Comput. Assist. Tomogr. 7,
1062-1066.

Brandes, A.A., Franceschi, E., Tosoni, A., Blatt, V., Pession, A., Tallini, G., Bertorelle, R.,
Bartolini, S., Calbucci, F., Andreoli, A., Frezza, G., Leonardi, M., Spagnolli, F., Ermani,
M., 2008. MGMT promoter methylation status can predict the incidence and outcome
of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glio-
blastoma patients. J. Clin. Oncol. 26, 2192-2197.

Brandsma, D., Stalpers, L., Taal, W., Sminia, P., van den Bent, M,J., 2008. Clinical features,
mechanisms, and management of pseudoprogression in malignant gliomas. Lancet
Oncol. 9, 453-461.

Brandsma, D., van den Bent, M.J., 2009. Pseudoprogression and pseudoresponse in the
treatment of gliomas. Curr. Opin. Neurol. 22, 633-638.

Calcagni, M.L,, Galli, G., Giordano, A., Taralli, S., Anile, C., Niesen, A., Baum, R.P., 2011. Dy-
namic O-(2-[18F]fluoroethyl)-L-tyrosine (F-18 FET) PET for glioma grading: assess-
ment of individual probability of malignancy. Clin. Nucl. Med. 36, 841-847.

Ceccon, G., Lohmann, P,, Stoffels, G., Judov, N,, Filss, C.P., Rapp, M., Bauer, E., Hamisch, C,
Ruge, ML, Kocher, M., Kuchelmeister, K., Sellhaus, B., Sabel, M., Fink, G.R., Shah, NJ.,
Langen, KJ., Galldiks, N., 2016. Dynamic O-(2-18F-fluoroethyl)-L-tyrosine positron
emission tomography differentiates brain metastasis recurrence from radiation inju-
ry after radiotherapy. Neuro-Oncology (Jul 28 Epub ahead of print).

Chen, W., Cloughesy, T., Kamdar, N., Satyamurthy, N., Bergsneider, M., Liau, L., Mischel, P.,
Czernin, J., Phelps, M.E., Silverman, D.H., 2005. Imaging proliferation in brain tumors
with 18F-FLT PET: comparison with 18F-FDG. ]. Nucl. Med. 46, 945-952.

Chen, W., Delaloye, S., Silverman, D.H., Geist, C., Czernin, J., Sayre, J., Satyamurthy, N., Pope,
W., Lai, A, Phelps, M.E., Cloughesy, T., 2007. Predicting treatment response of malig-
nant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F]
fluorothymidine positron emission tomography: a pilot study. J. Clin. Oncol. 25,
4714-4721.

Cicone, F., Minniti, G., Romano, A., Papa, A., Scaringi, C., Tavanti, F., Bozzao, A., Maurizi
Enrici, R., Scopinaro, F., 2015. Accuracy of F-DOPA PET and perfusion-MRI for differen-
tiating radionecrotic from progressive brain metastases after radiosurgery. Eur.
J. Nucl. Med. Mol. Imaging 42, 103-111.

Dhermain, F.G., Hau, P., Lanfermann, H., Jacobs, A.H., van den Bent, M., 2010. Advanced
MRI and PET imaging for assessment of treatment response in patients with gliomas.
Lancet Neurol. 9, 906-920.

Floeth, F.W,, Sabel, M., Ewelt, C., Stummer, W., Felsberg, ]., Reifenberger, G., Steiger, H.J.,
Stoffels, G., Coenen, H.H., Langen, K., 2011. Comparison of (18)F-FET PET and 5-
ALA fluorescence in cerebral gliomas. Eur. J. Nucl. Med. Mol. Imaging 38, 731-741.

Galldiks, N., Dunkl, V., Stoffels, G., Hutterer, M., Rapp, M., Sabel, M., Reifenberger, G., Kebir,
S., Dorn, F,, Blau, T., Herrlinger, U., Hau, P., Ruge, M., Kocher, M., Goldbrunner, R.,
Fink, G.R., Drzezga, A. Schmidt, M. Langen, KJ., 2015a. Diagnosis of
pseudoprogression in patients with glioblastoma using O-(2-[(18)F]fluoroethyl)-L-
tyrosine PET. Eur. J. Nucl. Med. Mol. Imaging 42, 685-695.

Galldiks, N., Filss, C.P., Goldbrunner, R., Langen, KJ. 2012a. Discrepant MR and
[(18)F]fluoroethyl-L-tyrosine PET imaging findings in a patient with bevacizumab
failure. Case Rep. Oncol. 5, 490-494.

Galldiks, N., Kracht, LW., Burghaus, L., Thomas, A., Jacobs, A.H., Heiss, W.D., Herholz, K.,
2006. Use of 11C-methionine PET to monitor the effects of temozolomide chemother-
apy in malignant gliomas. Eur. J. Nucl. Med. Mol. Imaging 33, 516-524.

Galldiks, N., Kracht, LW., Burghaus, L., Ullrich, R.T., Backes, H., Brunn, A., Heiss, W.D.,
Jacobs, A.H,, 2010. Patient-tailored, imaging-guided, long-term temozolomide che-
motherapy in patients with glioblastoma. Mol. Imaging 9, 40-46.

Galldiks, N., Langen, K., Holy, R., Pinkawa, M., Stoffels, G., Nolte, K., Kaiser, H., Filss, C., Fink,
G., Coenen, H., Eble, M., Piroth, M., 2012b. Assessment of treatment response in pa-
tients with glioblastoma using [18F]fluoroethyl-L-tyrosine PET in comparison to
MRL J. Nucl. Med. 53, 1048-1057.

Galldiks, N., Langen, K J., 2016. Amino acid PET - an imaging option to identify treatment
response, posttherapeutic effects, and tumor recurrence? Front. Neurol. 7, 120.

Galldiks, N., Langen, K., Pope, W.B., 2015b. From the clinician's point of view - what is the
status quo of positron emission tomography in patients with brain tumors? Neuro-
Oncology 17, 1434-1444.

Galldiks, N., Rapp, M., Stoffels, G., Dunkl, V., Sabel, M., Langen, K., 2013a. Earlier diagnosis
of progressive disease during bevacizumab treatment using O-(2-18F-fluorethyl)-L-
tyrosine positron emission tomography in comparison with magnetic resonance im-
aging. Mol. Imaging 12, 273-276.

Galldiks, N., Rapp, M., Stoffels, G., Fink, G.R., Shah, N.J., Coenen, H.H., Sabel, M., Langen, KJ.,
2013b. Response assessment of bevacizumab in patients with recurrent malignant
glioma using [18F]fluoroethyl-L-tyrosine PET in comparison to MRI. Eur. J. Nucl.
Med. Mol. Imaging 40, 22-33.

Galldiks, N., Stoffels, G., Filss, C., Rapp, M., Blau, T., Tscherpel, C., Ceccon, G., Dunkl, V.,
Weinzierl, M., Stoffel, M., Sabel, M., Fink, G.R,, Shah, N.J,, Langen, K]., 2015c. The use
of dynamic O-(2-18F-fluoroethyl)-L-tyrosine PET in the diagnosis of patients with
progressive and recurrent glioma. Neuro-Oncology 17, 1293-1300.

Galldiks, N., Stoffels, G., Filss, C.P., Piroth, M.D., Sabel, M., Ruge, M.L, Herzog, H., Shah, N.J.,
Fink, G.R., Coenen, H.H., Langen, K]., 2012c. Role of O-(2-18F-fluoroethyl)-L-tyrosine
PET for differentiation of local recurrent brain metastasis from radiation necrosis.
J- Nucl. Med. 53, 1367-1374.

Galldiks, N., Ullrich, R., Schroeter, M., Fink, G.R., Kracht, LW., 2009. Imaging biological ac-
tivity of a glioblastoma treated with an individual patient-tailored, experimental
therapy regimen. J. Neuro-Oncol. 93, 425-430.

Galldiks, N., von Tempelhoff, W., Kahraman, D., Kracht, L.W., Vollmar, S., Fink, G.R,,
Schroeter, M., Goldbrunner, R., Schmidt, M., Maarouf, M., 2012d. 11C-methionine
positron emission tomographic imaging of biologic activity of a recurrent glioblasto-
ma treated with stereotaxy-guided laser-induced interstitial thermotherapy. Mol.
Imaging 11, 265-271.

Gerstner, ER,, Zhang, Z., Fink, JR., Muzi, M., Hanna, L., Greco, E., Prah, M., Schmainda, KM.,
Mintz, A., Kostakoglu, L., Eikman, E.A., Ellingson, B.M,, Ratai, E.M., Sorensen, A.G.,
Barboriak, D.P., Mankoff, D.A., Group, A.T, 2016. ACRIN 6684: assessment of tumor hyp-
oxia in newly diagnosed glioblastoma using 18F-FMISO PET and MRI. Clin. Cancer Res.

Grosu, AL, Astner, S.T., Riedel, E., Nieder, C., Wiedenmann, N., Heinemann, F., Schwaiger,
M., Molls, M., Wester, H.J., Weber, W.A., 2011. An interindividual comparison of O-(2-
[(18)F]fluoroethyl)-i-tyrosine (FET)- and L-[methyl-(11)C]methionine (MET)-PET in
patients with brain gliomas and metastases. Int. J. Radiat. Oncol. Biol. Phys. 81,
1049-1058.

Haining, Z., Kawai, N., Miyake, K., Okada, M., Okubo, S., Zhang, X, Fei, Z., Tamiya, T., 2012.
Relation of LAT1/4F2hc expression with pathological grade, proliferation and angio-
genesis in human gliomas. BMC Clin. Pathol. 12, 4.

Heinzel, A, Miiller, D., Langen, KJ., Blaum, M., Verburg, F.A., Mottaghy, F.M., Galldiks, N.,
2013. The use of O-(2-18F-fluoroethyl)-L-tyrosine PET for treatment management
of bevacizumab and irinotecan in patients with recurrent high-grade glioma: a
cost-effectiveness analysis. ]. Nucl. Med. 54, 1217-1222.

Herholz, K., Kracht, LW., Heiss, W.D., 2003. Monitoring the effect of chemotherapy in a
mixed glioma by C-11-methionine PET. . Neuroimaging 13, 269-271.

Herholz, K., Langen, K., Schiepers, C., Mountz, ].M., 2012. Brain tumors. Semin. Nucl. Med.
42, 356-370.

Hodi, F.S., Hwu, W], Kefford, R., Weber, ].S., Daud, A., Hamid, O., Patnaik, A., Ribas, A.,
Robert, C.,, Gangadhar, T.C., Joshua, A.M., Hersey, P., Dronca, R., Joseph, R, Hille, D.,
Xue, D, Li, X.N,, Kang, S.P., Ebbinghaus, S., Perrone, A., Wolchok, ].D., 2016. Evaluation
of immune-related response criteria and RECIST v1.1 in patients with advanced mel-
anoma treated with pembrolizumab. J. Clin. Oncol. 34, 1510-1517.

Huang, C,, McConathy, J., 2013. Radiolabeled amino acids for oncologic imaging. J. Nucl.
Med. 54, 1007-1010.

Hutterer, M., Nowosielski, M., Putzer, D., Waitz, D., Tinkhauser, G., Kostron, H., Muigg, A.,
Virgolini, 1],, Staffen, W., Trinka, E., Gotwald, T., Jacobs, A.H., Stockhammer, G., 2011.
0-(2-18F-fluoroethyl)-L-tyrosine PET predicts failure of antiangiogenic treatment in
patients with recurrent high-grade glioma. J. Nucl. Med. 52, 856-864.

Jacobs, AH., Thomas, A,, Kracht, LW., Li, H,, Dittmar, C,, Garlip, G., Galldiks, N., Klein, ].C,,
Sobesky, J., Hilker, R., Vollmar, S., Herholz, K., Wienhard, K., Heiss, W.D., 2005. 18F-
fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport
and proliferation in brain tumors. J. Nucl. Med. 46, 1948-1958.

Jansen, N.L, Suchorska, B., Schwarz, S.B., Eigenbrod, S., Lutz, ]., Graute, V., Bartenstein, P.,
Belka, C., Kreth, FW., la Fougere, C., 2013. [ 18F]fluoroethyltyrosine-positron emission
tomography-based therapy monitoring after stereotactic iodine-125 brachytherapy
in patients with recurrent high-grade glioma. Mol. Imaging 12, 137-147.

Jansen, N.L, Suchorska, B., Wenter, V., Eigenbrod, S., Schmid-Tannwald, C., Zwergal, A.,
Niyazi, M., Drexler, M., Bartenstein, P., Schnell, O., Tonn, J.C,, Thon, N., Kreth, EFW,, la
Fougere, C., 2014. Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade gli-
oma identifies high-risk patients. J. Nucl. Med. 55, 198-203.

Jansen, N.L,, Suchorska, B., Wenter, V., Schmid-Tannwald, C., Todica, A., Eigenbrod, S.,
Niyazi, M., Tonn, ].C,, Bartenstein, P., Kreth, F.W., la Fougere, C., 2015. Prognostic sig-
nificance of dynamic 18F-FET PET in newly diagnosed astrocytic high-grade glioma.
J- Nucl. Med. 56, 9-15.

Kamson, D.O., Juhasz, C., Buth, A, Kupsky, W.J,, Barger, G.R., Chakraborty, P.K,, Muzik, O.,
Mittal, S., 2013. Tryptophan PET in pretreatment delineation of newly-diagnosed gli-
omas: MRI and histopathologic correlates. J. Neuro-Oncol. 112, 121-132.

Kamson, D.O., Mittal, S., Robinette, N.L., Muzik, O., Kupsky, W.J., Barger, G.R,, Juhasz, C.,
2014. Increased tryptophan uptake on PET has strong independent prognostic
value in patients with a previously treated high-grade glioma. Neuro-Oncology 16,
1373-1383.

Kebir, S., Fimmers, R., Galldiks, N., Schafer, N., Mack, F., Schaub, C., Stuplich, M., Niessen,
M,, Tzaridis, T., Simon, M., Stoffels, G., Langen, KJ., Scheffler, B., Glas, M., Herrlinger,
U,, 2016a. Late pseudoprogression in glioblastoma: diagnostic value of dynamic O-
(2-[18F]fluoroethyl)-i-tyrosine PET. Clin. Cancer Res. 22, 2190-2196.

Kebir, S., Rauschenbach, L., Galldiks, N., Schlaak, M., Hattingen, E., Landsberg, J.,
Bundschuh, R.A,, Langen, K., Scheffler, B., Herrlinger, U., Glas, M., 2016b. Dynamic
0-(2-[18F]fluoroethyl)-i-tyrosine PET imaging for the detection of checkpoint inhib-
itor-related pseudoprogression in melanoma brain metastases. Neuro-Oncology 18
(10), 1462-1464.

Kladsner, B., Buchmann, N., Gempt, ], Ringel, F., Lapa, C,, Krause, BJ., 2015. Early [18F]FET-
PET in gliomas after surgical resection: comparison with MRI and histopathology.
PLoS One 10, e0141153.

Kondo, A, Ishii, H., Aoki, S., Suzuki, M., Nagasawa, H., Kubota, K., Minamimoto, R.,
Arakawa, A., Tominaga, M., Arai, H., 2016. Phase Ila clinical study of [ 18F]fluciclovine:
efficacy and safety of a new PET tracer for brain tumors. Ann. Nucl. Med. 30, 608-618.

Kratochwil, C,, Combs, S.E., Leotta, K., Afshar-Oromieh, A, Rieken, S., Debus, ]., Haberkorn,
U, Giesel, F.L,, 2014. Intra-individual comparison of (18)F-FET and (18)F-DOPA in PET
imaging of recurrent brain tumors. Neuro-Oncology 16, 434-440.

Kruser, T.J., Mehta, M.P., Robins, H.I, 2013. Pseudoprogression after glioma therapy: a
comprehensive review. Expert. Rev. Neurother. 13, 389-403.



N. Galldiks et al. / Neurolmage: Clinical 13 (2017) 386-394 393

Kumar, AJ., Leeds, N.E., Fuller, G.N., Van Tassel, P., Maor, M.H., Sawaya, R.E., Levin, V.A,,
2000. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemo-
therapy-induced necrosis of the brain after treatment. Radiology 217, 377-384.

Lacroix, M., Abi-Said, D., Fourney, D.R., Gokaslan, Z.L., Shi, W., DeMonte, F., Lang, F.F.,
McCutcheon, LE., Hassenbusch, S.J., Holland, E., Hess, K., Michael, C., Miller, D.,
Sawaya, R., 2001. A multivariate analysis of 416 patients with glioblastoma
multiforme: prognosis, extent of resection, and survival. J. Neurosurg. 95, 190-198.

Langen, KJ., Hamacher, K., Weckesser, M., Floeth, F.,, Stoffels, G., Bauer, D., Coenen, HH.,
Pauleit, D., 2006. O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical
applications. Nucl. Med. Biol. 33, 287-294.

Langen, K., Jarosch, M., Miihlensiepen, H., Hamacher, K., Broer, S., Jansen, P,, Zilles, K.,
Coenen, H.H., 2003. Comparison of fluorotyrosines and methionine uptake in F98
rat gliomas. Nucl. Med. Biol. 30, 501-508.

Langen, KJ., Watts, C.,, 2016. Neuro-oncology: amino acid PET for brain tumours - ready
for the clinic? Nat. Rev. Neurol. 12, 375-376.

Lee, S.T., Scott, A.M., 2007. Hypoxia positron emission tomography imaging with 18f-
fluoromisonidazole. Semin. Nucl. Med. 37, 451-461.

Lescher, S., Schniewindet, S., Jurcoane, A., Senft, C., Hattingen, E., 2014. Time window for
postoperative reactive enhancement after resection of brain tumors: less than
72 hours. Neurosurg. Focus. 37, E3.

Lizarraga, KJ., Allen-Auerbach, M., Czernin, J., DeSalles, A.A., Yong, W.H., Phelps, M.E.,
Chen, W., 2014. (18)F-FDOPA PET for differentiating recurrent or progressive brain
metastatic tumors from late or delayed radiation injury after radiation treatment.
J. Nucl. Med. 55, 30-36.

Macdonald, D.R,, Cascino, T.L., Schold Jr., S.C., Cairncross, J.G., 1990. Response criteria for
phase II studies of supratentorial malignant glioma. J. Clin. Oncol. 8, 1277-1280.
Minniti, G., Clarke, E., Lanzetta, G., Osti, M.F., Trasimeni, G., Bozzao, A., Romano, A., Enrici,
R.M,, 2011. Stereotactic radiosurgery for brain metastases: analysis of outcome and

risk of brain radionecrosis. Radiat. Oncol. 48 (May 15).

Morana, G., Piccardo, A., Garre, M.L., Nozza, P., Consales, A., Rossi, A., 2013. Multimodal
magnetic resonance imaging and 18F-L-dihydroxyphenylalanine positron emission
tomography in early characterization of pseudoresponse and nonenhancing tumor
progression in a pediatric patient with malignant transformation of ganglioglioma
treated with bevacizumab. J. Clin. Oncol. 31, e1-e5.

Moulin-Romsée, G., D'Hondt, E., de Groot, T., Goffin, J., Sciot, R., Mortelmans, L., Menten, J.,
Bormans, G., Van Laere, K., 2007. Non-invasive grading of brain tumours using dy-
namic amino acid PET imaging: does it work for 11C-methionine? Eur. J. Nucl. Med.
Mol. Imaging 34, 2082-2087.

Nduom, E.K., Wei, ]., Yaghi, N.K, Huang, N., Kong, LY., Gabrusiewicz, K, Ling, X, Zhou, S.,
Ivan, C., Chen, J.Q,, Burks, J.K,, Fuller, G.N., Calin, G.A., Conrad, C.A,, Creasy, C.,
Ritthipichai, K., Radvanyi, L., Heimberger, A.B., 2016. PD-L1 expression and prognostic
impact in glioblastoma. Neuro-Oncology 18, 195-205.

Okada, H., Weller, M., Huang, R., Finocchiaro, G., Gilbert, M.R., Wick, W., Ellingson, B.M.,
Hashimoto, N., Pollack, LF., Brandes, A.A., Franceschi, E., Herold-Mende, C., Nayak, L.,
Panigrahy, A., Pope, W.B,, Prins, R., Sampson, J.H., Wen, P.Y., Reardon, D.A.,, 2015. Im-
munotherapy response assessment in neuro-oncology: a report of the RANO working
group. Lancet Oncol. 16, e534-e542.

Okubo, S., Zhen, H.N., Kawai, N., Nishiyama, Y., Haba, R., Tamiya, T., 2010. Correlation of L-
methyl-11C-methionine (MET) uptake with L-type amino acid transporter 1 in
human gliomas. J. Neuro-Oncol. 99, 217-225.

Papin-Michault, C., Bonnetaud, C., Dufour, M., Almairac, F., Coutts, M., Patouraux, S.,
Virolle, T., Darcourt, J., Burel-Vandenbos, F., 2016. Study of LAT1 expression in brain
metastases: towards a better understanding of the results of positron emission to-
mography using amino acid tracers. PLoS One 11, e0157139.

Piroth, M.D., Holy, R., Pinkawa, M,, Stoffels, G., Kaiser, H.J., Galldiks, N., Herzog, H., Coenen,
H.H,, Eble, M ], Langen, K., 2011a. Prognostic impact of postoperative, pre-irradiation
(18)F-fluoroethyl-L-tyrosine uptake in glioblastoma patients treated with radioche-
motherapy. Radiother. Oncol. 99, 218-224.

Piroth, M.D., Liebenstund, S., Galldiks, N., Stoffels, G., Shah, N.J., Eble, M.J., Coenen, H.H.,
Langen, KJ., 2013. Monitoring of radiochemotherapy in patients with glioblastoma
using O-(2-(18)fluoroethyl)-L-tyrosine positron emission tomography: is dynamic
imaging helpful? Mol. Imaging 12, 388-395.

Piroth, M.D., Pinkawa, M., Holy, R, Klotz, ]., Nussen, S., Stoffels, G., Coenen, H.H., Kaiser,
HJ., Langen, KJ., Eble, M.J., 2011b. Prognostic value of early [18F]fluoroethyltyrosine
positron emission tomography after radiochemotherapy in glioblastoma multiforme.
Int. J. Radiat. Oncol. Biol. Phys. 80, 176-184.

Pirotte, BJ., Levivier, M., Goldman, S., Massager, N., Wikler, D., Dewitte, O., Bruneau, M.,
Rorive, S., David, P., Brotchi, ]., 2009. Positron emission tomography-guided volumet-
ric resection of supratentorial high-grade gliomas: a survival analysis in 66 consecu-
tive patients. Neurosurgery 64, 471-481.

Popper], G., Goldbrunner, R, Gildehaus, FJ., Kreth, FW., Tanner, P., Holtmannspotter, M.,
Tonn, ].C,, Tatsch, K., 2005. O-(2-[18F|fluoroethyl)-L-tyrosine PET for monitoring the
effects of convection-enhanced delivery of paclitaxel in patients with recurrent glio-
blastoma. Eur. ]. Nucl. Med. Mol. Imaging 32, 1018-1025.

Popperl, G., Gotz, C., Rachinger, W., Schnell, O., Gildehaus, FJ., Tonn, J.C., Tatsch, K., 2006.
Serial O-(2-[(18)F]fluoroethyl)-L:-tyrosine PET for monitoring the effects of intracav-
itary radioimmunotherapy in patients with malignant glioma. Eur. J. Nucl. Med. Mol.
Imaging 33, 792-800.

Popperl, G., Kreth, EW., Mehrkens, J.H., Herms, J., Seelos, K., Koch, W., Gildehaus, F].,
Kretzschmar, H.A,, Tonn, ].C,, Tatsch, K., 2007. FET PET for the evaluation of untreated
gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur.
J. Nucl. Med. Mol. Imaging 34, 1933-1942.

Poulsen, S.H., Urup, T., Grunnet, K., Christensen, 1]., Larsen, V.A., Jensen, M.L,, Af
Rosenschold, P.M., Poulsen, H.S., Law, 1,, 2016. The prognostic value of FET PET at ra-
diotherapy planning in newly diagnosed glioblastoma. Eur. J. Nucl. Med. Mol. Imaging
(Epub ahead of print 23 Aug).

Preusser, M., Lim, M., Hafler, D.A., Reardon, D.A., Sampson, ].H., 2015. Prospects of immune
checkpoint modulators in the treatment of glioblastoma. Nat. Rev. Neurol. 11,
504-514.

Reithmeier, T., Lopez, W.0., Spehl, T.S., Nguyen, T., Mader, I., Nikkhah, G., Pinsker, M.O.,
2013. Bevacizumab as salvage therapy for progressive brain stem gliomas. Clin.
Neurol. Neurosurg. 115, 165-169.

Roelcke, U., Wyss, M.T., Nowosielski, M., Ruda, R., Roth, P., Hofer, S., Galldiks, N., Crippa, F.,
Weller, M., Soffietti, R., 2016. Amino acid positron emission tomography to monitor
chemotherapy response and predict seizure control and progression-free survival
in WHO grade II gliomas. Neuro-Oncology 18, 744-751.

Schwarzenberg, ]., Czernin, J., Cloughesy, T.F., Ellingson, B.M., Pope, W.B., Grogan, T.,
Elashoff, D., Geist, C., Silverman, D.H., Phelps, M.E., Chen, W., 2014. Treatment re-
sponse evaluation using 18F-FDOPA PET in patients with recurrent malignant glioma
on bevacizumab therapy. Clin. Cancer Res. 20, 3550-3559.

Shah, AH, Snelling, B., Bregy, A., Patel, P.R., Tememe, D., Bhatia, R,, Sklar, E., Komotar, R].,
2013. Discriminating radiation necrosis from tumor progression in gliomas: a sys-
tematic review what is the best imaging modality? J. Neuro-Oncol. 112, 141-152.

Singhal, T, Narayanan, T.K, Jain, V., Mukherjee, ]., Mantil, ]., 2008. 11C-L-methionine pos-
itron emission tomography in the clinical management of cerebral gliomas. Mol. Im-
aging Biol. 10, 1-18.

Spence, A.M., Muzi, M., Swanson, K.R., O'Sullivan, F., Rockhill, ].K., Rajendran, ].G.,
Adamsen, T.C,, Link, ].M., Swanson, P.E., Yagle, KJ., Rostomily, R.C,, Silbergeld, D.L.,
Krohn, K.A., 2008. Regional hypoxia in glioblastoma multiforme quantified with
[18F]fluoromisonidazole positron emission tomography before radiotherapy: corre-
lation with time to progression and survival. Clin. Cancer Res. 14, 2623-2630.

Stummer, W., Pichlmeier, U., Meinel, T., Wiestler, O.D., Zanella, F., Reulen, H.J., 2006. Fluo-
rescence-guided surgery with 5-aminolevulinic acid for resection of malignant glio-
ma: a randomised controlled multicentre phase Il trial. Lancet Oncol. 7, 392-401.

Stuplich, M., Hadizadeh, D.R., Kuchelmeister, K., Scorzin, J., Filss, C,, Langen, K]J., Schafer, N.,
Mack, F,, Schuller, H., Simon, M,, Glas, M., Pietsch, T., Urbach, H., Herrlinger, U., 2012.
Late and prolonged pseudoprogression in glioblastoma after treatment with
lomustine and temozolomide. J. Clin. Oncol. 30, e180-e183.

Su, Z,, Herholz, K., Gerhard, A., Roncaroli, F., Du Plessis, D., Jackson, A., Turkheimer, F., Hinz,
R., 2013. [(11)C]-(R)PK11195 tracer kinetics in the brain of glioma patients and a
comparison of two referencing approaches. Eur. J. Nucl. Med. Mol. Imaging 40,
1406-1419.

Su, Z., Roncaroli, F., Durrenberger, P.F., Coope, D.J., Karabatsou, K., Hinz, R., Thompson, G.,
Turkheimer, F.E., Janczar, K., Du Plessis, D., Brodbelt, A., Jackson, A., Gerhard, A.,
Herholz, K., 2015. The 18-kDa mitochondrial translocator protein in human gliomas:
a 11C-(R)PK11195 PET imaging and neuropathology study. J. Nucl. Med. 56, 512-517.

Suchorska, B, Jansen, N.L,, Linn, ]., Kretzschmar, H., Janssen, H., Eigenbrod, S., Simon, M.,
Popperl, G., Kreth, FEW., l1a Fougere, C., Weller, M., Tonn, ].C., German Glioma, N.,
2015. Biological tumor volume in 18FET-PET before radiochemotherapy correlates
with survival in GBM. Neurology 84, 710-719.

Suchorska, B., Tonn, J.C,, Jansen, N.L,, 2014. PET imaging for brain tumor diagnostics. Curr.
Opin. Neurol. 27, 683-688.

Swissmedic, 2014. Swiss agency for therapeutic products. ]. Swissmedic 13, 651.

Terakawa, Y., Tsuyuguchi, N., Iwai, Y., Yamanaka, K., Higashiyama, S., Takami, T., Ohata, K.,
2008. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent
brain tumors from radiation necrosis after radiotherapy. J. Nucl. Med. 49, 694-699.

Tsuyuguchi, N., Sunada, L, Iwai, Y., Yamanaka, K., Tanaka, K., Takami, T., Otsuka, Y.,
Sakamoto, S., Ohata, K., Goto, T., Hara, M., 2003. Methionine positron emission to-
mography of recurrent metastatic brain tumor and radiation necrosis after stereotac-
tic radiosurgery: is a differential diagnosis possible? J. Neurosurg. 98, 1056-1064.

Venneti, S., Dunphy, M.P., Zhang, H., Pitter, K.L., Zanzonico, P., Campos, C,, Carlin, S.D., La
Rocca, G., Lyashchenko, S., Ploessl, K., Rohle, D., Omuro, A.M., Cross, ].R.,, Brennan,
CW., Weber, W.A,, Holland, E.C., Mellinghoff, LK., Kung, H.F., Lewis, ].S., Thompson,
CB., 2015. Glutamine-based PET imaging facilitates enhanced metabolic evaluation
of gliomas in vivo. Sci. Transl. Med. 7 (274ra217).

Voges, J., Herholz, K., Holzer, T., Wiirker, M., Bauer, B., Pietrzyk, U, Treuer, H., Schroder, R.,
Sturm, V., Heiss, W.D., 1997. 11C-methionine and 18F-2-fluorodeoxyglucose positron
emission tomography: a tool for diagnosis of cerebral glioma and monitoring after
brachytherapy with 1251 seeds. Stereotact. Funct. Neurosurg. 69, 129-135.

Wardak, M., Schiepers, C., Cloughesy, T.F., Dahlbom, M., Phelps, M.E., Huang, S.C,, 2014.
18F-FLT and 18F-FDOPA PET kinetics in recurrent brain tumors. Eur. J. Nucl. Med.
Mol. Imaging 41, 1199-1209.

Weber, W.A., Wester, HJ., Grosu, A.L.,, Herz, M., Dzewas, B., Feldmann, H.J., Molls, M.,
Stocklin, G., Schwaiger, M., 2000. O-(2-[18F]|fluoroethyl)-L-tyrosine and L-[methyl-
11C]methionine uptake in brain tumours: initial results of a comparative study.
Eur. J. Nucl. Med. 27, 542-549.

Wen, P.Y., Macdonald, D.R., Reardon, D.A.,, Cloughesy, T.F., Sorensen, A.G., Galanis, E.,
Degroot, ]., Wick, W., Gilbert, M.R., Lassman, A.B., Tsien, C., Mikkelsen, T., Wong,
E.T., Chamberlain, M.C., Stupp, R., Lamborn, KR., Vogelbaum, M.A., van den Bent,
M.J., Chang, S.M., 2010. Updated response assessment criteria for high-grade gliomas:
response assessment in neuro-oncology working group. J. Clin. Oncol. 28, 1963-1972.

Wester, H.J., Herz, M., Weber, W., Heiss, P., Senekowitsch-Schmidtke, R., Schwaiger, M.,
Stocklin, G., 1999. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-ty-
rosine for tumor imaging. J. Nucl. Med. 40, 205-212.

Winkeler, A., Boisgard, R., Awde, AR, Dubois, A., Theze, B., Zheng, ]., Ciobanu, L., Dolle, F.,
Viel, T., Jacobs, A.H., Tavitian, B., 2012. The translocator protein ligand [18F]DPA-714
images glioma and activated microglia in vivo. Eur. J. Nucl. Med. Mol. Imaging 39,
811-823.

Wiriyasermkul, P., Nagamori, S., Tominaga, H., Oriuchi, N,, Kaira, K., Nakao, H., Kitashoji, T.,
Ohgaki, R., Tanaka, H., Endou, H., Endo, K., Sakurai, H., Kanai, Y., 2012. Transport of 3-
fluoro-L-alpha-methyl-tyrosine by tumor-upregulated L-type amino acid transporter
1: a cause of the tumor uptake in PET. J. Nucl. Med. 53, 1253-1261.



394 N. Galldiks et al. / Neurolmage: Clinical 13 (2017) 386-394

Wolchok, ].D., Hoos, A., O'Day, S., Weber, ].S., Hamid, O., Lebbe, C., Maio, M., Binder, M.,
Bohnsack, O., Nichol, G., Humphrey, R, Hodi, F.S., 2009. Guidelines for the evaluation
of immune therapy activity in solid tumors: immune-related response criteria. Clin.
Cancer Res. 15, 7412-7420.

Wiirker, M., Herholz, K., Voges, ]., Pietrzyk, U., Treuer, H., Bauer, B., Sturm, V., Heiss, W.D.,
1996. Glucose consumption and methionine uptake in low-grade gliomas after io-
dine-125 brachytherapy. Eur. J. Nucl. Med. 23, 583-586.

Wyss, M., Hofer, S., Bruehlmeier, M., Hefti, M., Uhlmann, C., Bartschi, E., Buettner, U.W.,
Roelcke, U., 2009. Early metabolic responses in temozolomide treated low-grade gli-
oma patients. J. Neuro-Oncol. 95, 87-93.

Youland, R.S., Kitange, G.J., Peterson, T.E., Pafundi, D.H., Ramiscal, J.A., Pokorny, ]J.L.,
Giannini, C, Laack, N.N,, Parney, LF., Lowe, V., Brinkmann, D.H., Sarkaria, J.N., 2013.
The role of LAT1 in (18)F-DOPA uptake in malignant gliomas. J. Neuro-Oncol. 111,
11-18.



