000826481 001__ 826481
000826481 005__ 20240619091225.0
000826481 0247_ $$2doi$$a10.1615/TelecomRadEng.v75.i3.50
000826481 0247_ $$2ISSN$$a0040-2508
000826481 0247_ $$2ISSN$$a1943-6009
000826481 037__ $$aFZJ-2017-00706
000826481 041__ $$aEnglish
000826481 082__ $$a620
000826481 1001_ $$0P:(DE-HGF)0$$aBarannik, A. A.$$b0
000826481 245__ $$aRADIATION Q-FACTOR OF DIFFERENTSHAPE DIELECTRIC RESONATORS WITH TESTED CONDUCTORS AND LIQUID DIELECTRICSPGI-8
000826481 260__ $$aNew York, NY$$bScripta Technica, Inc.$$c2016
000826481 3367_ $$2DRIVER$$aarticle
000826481 3367_ $$2DataCite$$aOutput Types/Journal article
000826481 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1500965796_25564
000826481 3367_ $$2BibTeX$$aARTICLE
000826481 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826481 3367_ $$00$$2EndNote$$aJournal Article
000826481 520__ $$aWhispering gallery mode dielectric resonators are used as measuring cells to determine the electrophysical characteristics of materials. It is necessary to choose the resonator structure possessing acceptable radiation Q-factor values. Calculation of the radiation Q-factor by analytical methods is possible for simple symmetric structures only. Numerical investigations of different-shape leucosapphire resonators with limiting conducting end plates and without them are carried out in the Ka-band. The disk resonators with one conducting end plate are studied experimentally as well. The effect of tested material sample introduction in the electromagnetic field on the resonator field distribution, frequency and radiation Q-factor is shown. The application opportunity of measurement cells based on such resonators for determination of the (super)conductor microwave impedance and permittivity of dielectric liquids is analyzed. The results obtained can be used for choosing the resonator measurement cell with a negligible radiation loss. 
000826481 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000826481 588__ $$aDataset connected to CrossRef
000826481 7001_ $$0P:(DE-Juel1)128738$$aVitusevich, Svetlana$$b1
000826481 7001_ $$0P:(DE-HGF)0$$aProtsenko, I. А.$$b2$$eCorresponding author
000826481 7001_ $$0P:(DE-HGF)0$$aKharchenko, М. S.$$b3
000826481 7001_ $$0P:(DE-HGF)0$$aCherpak, Nikolay T.$$b4
000826481 773__ $$0PERI:(DE-600)2129071-4$$a10.1615/TelecomRadEng.v75.i3.50$$gVol. 75, no. 3, p. 235 - 245$$n3$$p235 - 245$$tTelecommunications and radio engineering$$v75$$x0040-2508$$y2016
000826481 909CO $$ooai:juser.fz-juelich.de:826481$$pVDB
000826481 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128738$$aForschungszentrum Jülich$$b1$$kFZJ
000826481 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000826481 9141_ $$y2017
000826481 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826481 920__ $$lyes
000826481 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x0
000826481 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x1
000826481 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000826481 980__ $$ajournal
000826481 980__ $$aVDB
000826481 980__ $$aI:(DE-Juel1)PGI-8-20110106
000826481 980__ $$aI:(DE-Juel1)ICS-8-20110106
000826481 980__ $$aI:(DE-82)080009_20140620
000826481 980__ $$aUNRESTRICTED
000826481 981__ $$aI:(DE-Juel1)IBI-3-20200312