001     826481
005     20240619091225.0
024 7 _ |a 10.1615/TelecomRadEng.v75.i3.50
|2 doi
024 7 _ |a 0040-2508
|2 ISSN
024 7 _ |a 1943-6009
|2 ISSN
037 _ _ |a FZJ-2017-00706
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Barannik, A. A.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a RADIATION Q-FACTOR OF DIFFERENTSHAPE DIELECTRIC RESONATORS WITH TESTED CONDUCTORS AND LIQUID DIELECTRICSPGI-8
260 _ _ |a New York, NY
|c 2016
|b Scripta Technica, Inc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1500965796_25564
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Whispering gallery mode dielectric resonators are used as measuring cells to determine the electrophysical characteristics of materials. It is necessary to choose the resonator structure possessing acceptable radiation Q-factor values. Calculation of the radiation Q-factor by analytical methods is possible for simple symmetric structures only. Numerical investigations of different-shape leucosapphire resonators with limiting conducting end plates and without them are carried out in the Ka-band. The disk resonators with one conducting end plate are studied experimentally as well. The effect of tested material sample introduction in the electromagnetic field on the resonator field distribution, frequency and radiation Q-factor is shown. The application opportunity of measurement cells based on such resonators for determination of the (super)conductor microwave impedance and permittivity of dielectric liquids is analyzed. The results obtained can be used for choosing the resonator measurement cell with a negligible radiation loss.
536 _ _ |a 523 - Controlling Configuration-Based Phenomena (POF3-523)
|0 G:(DE-HGF)POF3-523
|c POF3-523
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Vitusevich, Svetlana
|0 P:(DE-Juel1)128738
|b 1
700 1 _ |a Protsenko, I. А.
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Kharchenko, М. S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Cherpak, Nikolay T.
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1615/TelecomRadEng.v75.i3.50
|g Vol. 75, no. 3, p. 235 - 245
|0 PERI:(DE-600)2129071-4
|n 3
|p 235 - 245
|t Telecommunications and radio engineering
|v 75
|y 2016
|x 0040-2508
909 C O |o oai:juser.fz-juelich.de:826481
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)128738
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-523
|2 G:(DE-HGF)POF3-500
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-8-20110106
|k PGI-8
|l Bioelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-8-20110106
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21