000826495 001__ 826495
000826495 005__ 20240619083534.0
000826495 0247_ $$2doi$$a10.3390/e19010033
000826495 0247_ $$2Handle$$a2128/13542
000826495 0247_ $$2WOS$$aWOS:000392978500032
000826495 0247_ $$2altmetric$$aaltmetric:15448489
000826495 037__ $$aFZJ-2017-00718
000826495 041__ $$aEnglish
000826495 082__ $$a510
000826495 1001_ $$0P:(DE-Juel1)166572$$aNiether, Doreen$$b0$$ufzj
000826495 245__ $$aHeuristic Approach to Understanding the Accumulation Process in Hydrothermal Pores
000826495 260__ $$aBasel$$bMDPI$$c2017
000826495 3367_ $$2DRIVER$$aarticle
000826495 3367_ $$2DataCite$$aOutput Types/Journal article
000826495 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1485160500_18865
000826495 3367_ $$2BibTeX$$aARTICLE
000826495 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826495 3367_ $$00$$2EndNote$$aJournal Article
000826495 520__ $$aOne of the central questions of humankind is: which chemical and physical conditions arenecessary to make life possible? In this “origin-of-life” context, formamide plays an important role,because it has been demonstrated that prebiotic molecules can be synthesized from concentratedformamide solutions. Recently, it could be shown, using finite-element calculations combiningthermophoresis and convection processes in hydrothermal pores, that sufficiently high formamideconcentrations could be accumulated to form prebiotic molecules (Niether et al. (2016)). Depending onthe initial formamide concentration, the aspect ratio of the pores, and the ambient temperature,formamide concentrations up to 85 wt % could be reached. The stationary calculations show aneffective accumulation, only if the aspect ratio is above a certain threshold, and the correspondingtransient studies display a sudden increase of the accumulation after a certain time. Neither of theobservations were explained. In this work, we derive a simple heuristic model, which explainsboth phenomena. The physical idea of the approach is a comparison of the time to reach the top ofthe pore with the time to cross from the convective upstream towards the convective downstream.If the time to reach the top of the pore is shorter than the crossing time, the formamide moleculesare flushed out of the pore. If the time is long enough, the formamide molecules can reach thedownstream and accumulate at the bottom of the pore. Analysing the optimal aspect ratio as functionof concentration, we find that, at a weight fraction of w = 0.5, a minimal pore height is required foreffective accumulation. At the same concentration, the transient calculations show a maximum of theaccumulation rate.
000826495 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000826495 588__ $$aDataset connected to CrossRef
000826495 7001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b1$$eCorresponding author
000826495 770__ $$aNonequilibrium Phenomena in Confined Systems
000826495 773__ $$0PERI:(DE-600)2014734-X$$a10.3390/e19010033$$gVol. 19, no. 1, p. 33 -$$n1$$p33 -$$tEntropy$$v19$$x1099-4300$$y2017
000826495 8564_ $$uhttps://juser.fz-juelich.de/record/826495/files/Niether-2017-33.pdf$$yOpenAccess
000826495 8564_ $$uhttps://juser.fz-juelich.de/record/826495/files/Niether-2017-33.gif?subformat=icon$$xicon$$yOpenAccess
000826495 8564_ $$uhttps://juser.fz-juelich.de/record/826495/files/Niether-2017-33.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000826495 8564_ $$uhttps://juser.fz-juelich.de/record/826495/files/Niether-2017-33.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000826495 8564_ $$uhttps://juser.fz-juelich.de/record/826495/files/Niether-2017-33.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000826495 8564_ $$uhttps://juser.fz-juelich.de/record/826495/files/Niether-2017-33.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000826495 8767_ $$8entropy-166368$$92017-01-11$$d2017-01-17$$eAPC$$jZahlung erfolgt$$pentropy-166368$$zCHF 1.190,-
000826495 909CO $$ooai:juser.fz-juelich.de:826495$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000826495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b1$$kFZJ
000826495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b1$$kFZJ
000826495 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000826495 9141_ $$y2017
000826495 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826495 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000826495 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826495 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENTROPY-SWITZ : 2015
000826495 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000826495 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000826495 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826495 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826495 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000826495 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000826495 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826495 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826495 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826495 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826495 920__ $$lyes
000826495 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000826495 9801_ $$aFullTexts
000826495 980__ $$ajournal
000826495 980__ $$aVDB
000826495 980__ $$aUNRESTRICTED
000826495 980__ $$aI:(DE-Juel1)ICS-3-20110106
000826495 980__ $$aAPC