001     826495
005     20240619083534.0
024 7 _ |a 10.3390/e19010033
|2 doi
024 7 _ |a 2128/13542
|2 Handle
024 7 _ |a WOS:000392978500032
|2 WOS
024 7 _ |a altmetric:15448489
|2 altmetric
037 _ _ |a FZJ-2017-00718
041 _ _ |a English
082 _ _ |a 510
100 1 _ |a Niether, Doreen
|0 P:(DE-Juel1)166572
|b 0
|u fzj
245 _ _ |a Heuristic Approach to Understanding the Accumulation Process in Hydrothermal Pores
260 _ _ |a Basel
|c 2017
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1485160500_18865
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a One of the central questions of humankind is: which chemical and physical conditions arenecessary to make life possible? In this “origin-of-life” context, formamide plays an important role,because it has been demonstrated that prebiotic molecules can be synthesized from concentratedformamide solutions. Recently, it could be shown, using finite-element calculations combiningthermophoresis and convection processes in hydrothermal pores, that sufficiently high formamideconcentrations could be accumulated to form prebiotic molecules (Niether et al. (2016)). Depending onthe initial formamide concentration, the aspect ratio of the pores, and the ambient temperature,formamide concentrations up to 85 wt % could be reached. The stationary calculations show aneffective accumulation, only if the aspect ratio is above a certain threshold, and the correspondingtransient studies display a sudden increase of the accumulation after a certain time. Neither of theobservations were explained. In this work, we derive a simple heuristic model, which explainsboth phenomena. The physical idea of the approach is a comparison of the time to reach the top ofthe pore with the time to cross from the convective upstream towards the convective downstream.If the time to reach the top of the pore is shorter than the crossing time, the formamide moleculesare flushed out of the pore. If the time is long enough, the formamide molecules can reach thedownstream and accumulate at the bottom of the pore. Analysing the optimal aspect ratio as functionof concentration, we find that, at a weight fraction of w = 0.5, a minimal pore height is required foreffective accumulation. At the same concentration, the transient calculations show a maximum of theaccumulation rate.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wiegand, Simone
|0 P:(DE-Juel1)131034
|b 1
|e Corresponding author
770 _ _ |a Nonequilibrium Phenomena in Confined Systems
773 _ _ |a 10.3390/e19010033
|g Vol. 19, no. 1, p. 33 -
|0 PERI:(DE-600)2014734-X
|n 1
|p 33 -
|t Entropy
|v 19
|y 2017
|x 1099-4300
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/826495/files/Niether-2017-33.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/826495/files/Niether-2017-33.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/826495/files/Niether-2017-33.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/826495/files/Niether-2017-33.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/826495/files/Niether-2017-33.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/826495/files/Niether-2017-33.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:826495
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131034
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131034
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENTROPY-SWITZ : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-3-20110106
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21