000826502 001__ 826502
000826502 005__ 20210129225628.0
000826502 0247_ $$2doi$$a10.1103/PhysRevLett.115.036104
000826502 0247_ $$2ISSN$$a0031-9007
000826502 0247_ $$2ISSN$$a1079-7114
000826502 0247_ $$2ISSN$$a1092-0145
000826502 0247_ $$2Handle$$a2128/13521
000826502 0247_ $$2WOS$$aWOS:000358034400003
000826502 0247_ $$2altmetric$$aaltmetric:4288660
000826502 037__ $$aFZJ-2017-00725
000826502 082__ $$a550
000826502 1001_ $$0P:(DE-HGF)0$$aLiu, Wei$$b0
000826502 245__ $$aQuantitative Prediction of Molecular Adsorption: Structure and Binding of Benzene on Coinage Metals
000826502 260__ $$aCollege Park, Md.$$bAPS$$c2015
000826502 3367_ $$2DRIVER$$aarticle
000826502 3367_ $$2DataCite$$aOutput Types/Journal article
000826502 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484923356_27106
000826502 3367_ $$2BibTeX$$aARTICLE
000826502 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826502 3367_ $$00$$2EndNote$$aJournal Article
000826502 520__ $$aInterfaces between organic molecules and solid surfaces play a prominent role in heterogeneous catalysis, molecular sensors and switches, light-emitting diodes, and photovoltaics. The properties and the ensuing function of such hybrid interfaces often depend exponentially on molecular adsorption heights and binding strengths, calling for well-established benchmarks of these two quantities. Here we present systematic measurements that enable us to quantify the interaction of benzene with the Ag(111) coinage metal substrate with unprecedented accuracy (0.02 Å in the vertical adsorption height and 0.05 eV in the binding strength) by means of normal-incidence x-ray standing waves and temperature-programed desorption techniques. Based on these accurate experimental benchmarks for a prototypical molecule-solid interface, we demonstrate that recently developed first-principles calculations that explicitly account for the nonlocality of electronic exchange and correlation effects are able to determine the structure and stability of benzene on the Ag(111) surface within experimental error bars. Remarkably, such precise experiments and calculations demonstrate that despite different electronic properties of copper, silver, and gold, the binding strength of benzene is equal on the (111) surface of these three coinage metals. Our results suggest the existence of universal binding energy trends for aromatic molecules on surfaces.
000826502 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000826502 588__ $$aDataset connected to CrossRef
000826502 7001_ $$0P:(DE-HGF)0$$aMaaß, Friedrich$$b1
000826502 7001_ $$0P:(DE-Juel1)142384$$aWillenbockel, Martin$$b2
000826502 7001_ $$0P:(DE-HGF)0$$aBronner, Christopher$$b3
000826502 7001_ $$0P:(DE-HGF)0$$aSchulze, Michael$$b4
000826502 7001_ $$0P:(DE-HGF)0$$aSoubatch, Serguei$$b5
000826502 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. S.$$b6$$ufzj
000826502 7001_ $$0P:(DE-HGF)0$$aTegeder, Petra$$b7
000826502 7001_ $$0P:(DE-HGF)0$$aTkatchenko, Alexandre$$b8$$eCorresponding author
000826502 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.115.036104$$gVol. 115, no. 3, p. 036104$$n3$$p036104$$tPhysical review letters$$v115$$x1079-7114$$y2015
000826502 8564_ $$uhttps://juser.fz-juelich.de/record/826502/files/PhysRevLett.115.036104.pdf$$yOpenAccess
000826502 8564_ $$uhttps://juser.fz-juelich.de/record/826502/files/PhysRevLett.115.036104.gif?subformat=icon$$xicon$$yOpenAccess
000826502 8564_ $$uhttps://juser.fz-juelich.de/record/826502/files/PhysRevLett.115.036104.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000826502 8564_ $$uhttps://juser.fz-juelich.de/record/826502/files/PhysRevLett.115.036104.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000826502 8564_ $$uhttps://juser.fz-juelich.de/record/826502/files/PhysRevLett.115.036104.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000826502 8564_ $$uhttps://juser.fz-juelich.de/record/826502/files/PhysRevLett.115.036104.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000826502 909CO $$ooai:juser.fz-juelich.de:826502$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000826502 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000826502 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826502 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826502 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2015
000826502 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2015
000826502 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826502 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826502 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826502 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000826502 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826502 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826502 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000826502 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826502 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000826502 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826502 9141_ $$y2016
000826502 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b6$$kFZJ
000826502 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000826502 920__ $$lyes
000826502 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000826502 980__ $$ajournal
000826502 980__ $$aVDB
000826502 980__ $$aUNRESTRICTED
000826502 980__ $$aI:(DE-Juel1)PGI-3-20110106
000826502 9801_ $$aFullTexts