000826503 001__ 826503
000826503 005__ 20210129225629.0
000826503 0247_ $$2doi$$a10.1039/C5CC05003K
000826503 0247_ $$2ISSN$$a0009-241X
000826503 0247_ $$2ISSN$$a0022-4936
000826503 0247_ $$2ISSN$$a1359-7345
000826503 0247_ $$2ISSN$$a1364-548X
000826503 0247_ $$2Handle$$a2128/13522
000826503 0247_ $$2WOS$$aWOS:000363167000025
000826503 037__ $$aFZJ-2017-00726
000826503 041__ $$aEnglish
000826503 082__ $$a540
000826503 1001_ $$0P:(DE-Juel1)142384$$aWillenbockel, Martin$$b0
000826503 245__ $$aCoverage-driven dissociation of azobenzene on Cu(111): a route towards defined surface functionalization
000826503 260__ $$aCambridge$$bSoc.$$c2015
000826503 3367_ $$2DRIVER$$aarticle
000826503 3367_ $$2DataCite$$aOutput Types/Journal article
000826503 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1504762592_9608
000826503 3367_ $$2BibTeX$$aARTICLE
000826503 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826503 3367_ $$00$$2EndNote$$aJournal Article
000826503 520__ $$aWe investigate the surface-catalyzed dissociation of the archetypal molecular switch azobenzene on the Cu(111) surface. Based on X-ray photoelectron spectroscopy, normal incidence X-ray standing waves and density functional theory calculations a detailed picture of the coverage-induced formation of phenyl nitrene from azobenzene is presented. Furthermore, a comparison to the azobenzene/Ag(111) interface provides insight into the driving force behind the dissociation on Cu(111). The quantitative decay of azobenzene paves the way for the creation of a defect free, covalently bonded monolayer. Our work suggests a route of surface functionalization via suitable azobenzene derivatives and the on surface synthesis concept, allowing for the creation of complex immobilized molecular systems.
000826503 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000826503 588__ $$aDataset connected to CrossRef
000826503 7001_ $$0P:(DE-HGF)0$$aMaurer, Reinhard J.$$b1
000826503 7001_ $$0P:(DE-HGF)0$$aBronner, Christopher$$b2
000826503 7001_ $$0P:(DE-HGF)0$$aSchulze, Michael$$b3
000826503 7001_ $$0P:(DE-Juel1)139025$$aStadtmüller, Benjamin$$b4
000826503 7001_ $$0P:(DE-HGF)0$$aSoubatch, Serguei$$b5$$eCorresponding author
000826503 7001_ $$0P:(DE-HGF)0$$aTegeder, Petra$$b6
000826503 7001_ $$0P:(DE-HGF)0$$aReuter, Karsten$$b7
000826503 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b8$$ufzj
000826503 773__ $$0PERI:(DE-600)1472881-3$$a10.1039/C5CC05003K$$gVol. 51, no. 83, p. 15324 - 15327$$n83$$p15324 - 15327$$tChemical communications$$v51$$x1364-548X$$y2015
000826503 8564_ $$uhttps://juser.fz-juelich.de/record/826503/files/c5cc05003k.pdf$$yOpenAccess
000826503 8564_ $$uhttps://juser.fz-juelich.de/record/826503/files/c5cc05003k.gif?subformat=icon$$xicon$$yOpenAccess
000826503 8564_ $$uhttps://juser.fz-juelich.de/record/826503/files/c5cc05003k.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000826503 8564_ $$uhttps://juser.fz-juelich.de/record/826503/files/c5cc05003k.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000826503 8564_ $$uhttps://juser.fz-juelich.de/record/826503/files/c5cc05003k.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000826503 8564_ $$uhttps://juser.fz-juelich.de/record/826503/files/c5cc05003k.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000826503 909CO $$ooai:juser.fz-juelich.de:826503$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000826503 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b8$$kFZJ
000826503 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000826503 9141_ $$y2016
000826503 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000826503 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826503 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826503 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM COMMUN : 2015
000826503 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM COMMUN : 2015
000826503 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826503 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826503 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826503 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000826503 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000826503 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826503 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826503 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000826503 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826503 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000826503 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826503 920__ $$lyes
000826503 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000826503 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000826503 980__ $$ajournal
000826503 980__ $$aVDB
000826503 980__ $$aI:(DE-Juel1)PGI-3-20110106
000826503 980__ $$aI:(DE-82)080009_20140620
000826503 980__ $$aUNRESTRICTED
000826503 9801_ $$aFullTexts