000826554 001__ 826554
000826554 005__ 20210129225635.0
000826554 0247_ $$2doi$$a10.1016/j.bios.2016.02.037
000826554 0247_ $$2WOS$$aWOS:000372558500091
000826554 037__ $$aFZJ-2017-00773
000826554 082__ $$a570
000826554 1001_ $$0P:(DE-HGF)0$$aWang, Wei$$b0$$eCorresponding author
000826554 245__ $$aA magnetic nanoparticles relaxation sensor for protein-protein interaction detection at ultra-low magnetic field
000826554 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016
000826554 3367_ $$2DRIVER$$aarticle
000826554 3367_ $$2DataCite$$aOutput Types/Journal article
000826554 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1485159537_18862
000826554 3367_ $$2BibTeX$$aARTICLE
000826554 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826554 3367_ $$00$$2EndNote$$aJournal Article
000826554 520__ $$aFunctionalized magnetic nanoparticles (MNPs) can serve as magnetic relaxation sensors (MRSs) to detect different biological targets, because the clustering of magnetic particle may cause the spin-spin relaxation time (T2) decrease of the surrounding water protons. However, the application of MNPs in clinical NMR systems faces the challenge of poor stability at magnetic field strengths in the order of tesla. The recently developed ultra-low field (ULF) NMR technique working at microtesla (μT) range then becomes a candidate. Herein, we incorporated superconducting quantum interference device (SQUID) as the detector in the ultra-low field system to enhance the sensitivity. We functionalized the Fe3O4 nanoparticles with the gama-aminobutyrate type A receptor-associated proteins (GABARAP), which specifically interact with calreticulin (CRT). As a result of the interaction between GABARAP and CRT, the clustering of the functionalized MNPs generates local magnetic fields, which accelerate the dephasing of the water protons in the vicinity. We analyzed the relation between T2 values and the CRT concentrations at 211μT and the low detection limit for CRT is 10 pg/ml, which is superior to the immunoblot system. The high sensitivity of the ULF NMR system for protein-protein interaction detection demonstrates the potential to use this inexpensive, portable system for quick biochemical and clinical assays.
000826554 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000826554 7001_ $$0P:(DE-Juel1)132033$$ama, peixiang$$b1
000826554 7001_ $$0P:(DE-HGF)0$$aDong, Hui$$b2$$eCorresponding author
000826554 7001_ $$0P:(DE-Juel1)128697$$aKrause, Hans-Joachim$$b3$$ufzj
000826554 7001_ $$0P:(DE-Juel1)128754$$aZhang, Yi$$b4$$ufzj
000826554 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b5$$ufzj
000826554 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b6$$ufzj
000826554 7001_ $$0P:(DE-HGF)0$$aGu, Zhongwei$$b7
000826554 773__ $$0PERI:(DE-600)1496379-6$$a10.1016/j.bios.2016.02.037$$p661–665$$tBiosensors and bioelectronics$$v80$$x0956-5663$$y2016
000826554 8564_ $$uhttps://juser.fz-juelich.de/record/826554/files/1-s2.0-S0956566316301415-main.pdf$$yRestricted
000826554 8564_ $$uhttps://juser.fz-juelich.de/record/826554/files/1-s2.0-S0956566316301415-main.gif?subformat=icon$$xicon$$yRestricted
000826554 8564_ $$uhttps://juser.fz-juelich.de/record/826554/files/1-s2.0-S0956566316301415-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000826554 8564_ $$uhttps://juser.fz-juelich.de/record/826554/files/1-s2.0-S0956566316301415-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000826554 8564_ $$uhttps://juser.fz-juelich.de/record/826554/files/1-s2.0-S0956566316301415-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000826554 8564_ $$uhttps://juser.fz-juelich.de/record/826554/files/1-s2.0-S0956566316301415-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000826554 909CO $$ooai:juser.fz-juelich.de:826554$$pVDB
000826554 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826554 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000826554 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826554 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000826554 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOSENS BIOELECTRON : 2015
000826554 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBIOSENS BIOELECTRON : 2015
000826554 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826554 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826554 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826554 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826554 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000826554 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000826554 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826554 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000826554 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128697$$aForschungszentrum Jülich$$b3$$kFZJ
000826554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128754$$aForschungszentrum Jülich$$b4$$kFZJ
000826554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich$$b5$$kFZJ
000826554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b6$$kFZJ
000826554 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000826554 9141_ $$y2016
000826554 920__ $$lyes
000826554 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie$$x0
000826554 980__ $$ajournal
000826554 980__ $$aVDB
000826554 980__ $$aUNRESTRICTED
000826554 980__ $$aI:(DE-Juel1)ICS-6-20110106
000826554 981__ $$aI:(DE-Juel1)IBI-7-20200312