001     826554
005     20210129225635.0
024 7 _ |2 doi
|a 10.1016/j.bios.2016.02.037
024 7 _ |a WOS:000372558500091
|2 WOS
037 _ _ |a FZJ-2017-00773
082 _ _ |a 570
100 1 _ |0 P:(DE-HGF)0
|a Wang, Wei
|b 0
|e Corresponding author
245 _ _ |a A magnetic nanoparticles relaxation sensor for protein-protein interaction detection at ultra-low magnetic field
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1485159537_18862
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Functionalized magnetic nanoparticles (MNPs) can serve as magnetic relaxation sensors (MRSs) to detect different biological targets, because the clustering of magnetic particle may cause the spin-spin relaxation time (T2) decrease of the surrounding water protons. However, the application of MNPs in clinical NMR systems faces the challenge of poor stability at magnetic field strengths in the order of tesla. The recently developed ultra-low field (ULF) NMR technique working at microtesla (μT) range then becomes a candidate. Herein, we incorporated superconducting quantum interference device (SQUID) as the detector in the ultra-low field system to enhance the sensitivity. We functionalized the Fe3O4 nanoparticles with the gama-aminobutyrate type A receptor-associated proteins (GABARAP), which specifically interact with calreticulin (CRT). As a result of the interaction between GABARAP and CRT, the clustering of the functionalized MNPs generates local magnetic fields, which accelerate the dephasing of the water protons in the vicinity. We analyzed the relation between T2 values and the CRT concentrations at 211μT and the low detection limit for CRT is 10 pg/ml, which is superior to the immunoblot system. The high sensitivity of the ULF NMR system for protein-protein interaction detection demonstrates the potential to use this inexpensive, portable system for quick biochemical and clinical assays.
536 _ _ |0 G:(DE-HGF)POF3-551
|a 551 - Functional Macromolecules and Complexes (POF3-551)
|c POF3-551
|f POF III
|x 0
700 1 _ |0 P:(DE-Juel1)132033
|a ma, peixiang
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Dong, Hui
|b 2
|e Corresponding author
700 1 _ |0 P:(DE-Juel1)128697
|a Krause, Hans-Joachim
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)128754
|a Zhang, Yi
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)132029
|a Willbold, Dieter
|b 5
|u fzj
700 1 _ |0 P:(DE-Juel1)128713
|a Offenhäusser, Andreas
|b 6
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Gu, Zhongwei
|b 7
773 _ _ |0 PERI:(DE-600)1496379-6
|a 10.1016/j.bios.2016.02.037
|p 661–665
|t Biosensors and bioelectronics
|v 80
|x 0956-5663
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/826554/files/1-s2.0-S0956566316301415-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826554/files/1-s2.0-S0956566316301415-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826554/files/1-s2.0-S0956566316301415-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826554/files/1-s2.0-S0956566316301415-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826554/files/1-s2.0-S0956566316301415-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826554/files/1-s2.0-S0956566316301415-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:826554
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128697
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128754
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)132029
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128713
|a Forschungszentrum Jülich
|b 6
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-551
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0550
|2 StatID
|a No Authors Fulltext
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b BIOSENS BIOELECTRON : 2015
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b BIOSENS BIOELECTRON : 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21