000826578 001__ 826578
000826578 005__ 20240712084519.0
000826578 0247_ $$2doi$$a10.7567/JJAP.56.022302
000826578 0247_ $$2WOS$$aWOS:000394525500001
000826578 037__ $$aFZJ-2017-00797
000826578 041__ $$aEnglish
000826578 082__ $$a530
000826578 1001_ $$0P:(DE-Juel1)162141$$aPomaska, Manuel$$b0$$eCorresponding author
000826578 245__ $$aWide gap microcrystalline silicon carbide emitter for amorphous silicon oxide passivated heterojunction solar cells
000826578 260__ $$aBristol$$bIOP Publ.$$c2017
000826578 3367_ $$2DRIVER$$aarticle
000826578 3367_ $$2DataCite$$aOutput Types/Journal article
000826578 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1508909607_25340
000826578 3367_ $$2BibTeX$$aARTICLE
000826578 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826578 3367_ $$00$$2EndNote$$aJournal Article
000826578 520__ $$aWide gap n-type microcrystalline silicon carbide [μc-SiC:H(n)] is highly suitable as window layer material for silicon heterojunction (SHJ) solar cellsdue to its high optical transparency combined with high electrical conductivity. However, the hot wire chemical vapor deposition (HWCVD) of highlycrystalline μc-SiC:H(n) requires a high hydrogen radical density in the gas phase that gives rise to strong deterioration of the intrinsic amorphoussilicon oxide [a-SiOx:H(i)] surface passivation. Introducing an n-type microcrystalline silicon oxide [μc-SiOx:H(n)] protection layer between theμc-SiC:H(n) and the a-SiOx:H(i) prevents the deterioration of the passivation by providing an etch resistance and by blocking the diffusion ofhydrogen radicals. We fabricated solar cells with μc-SiC:H(n)/μc-SiOx:H(n)/a-SiOx:H(i) stack for the front side and varied the μc-SiOx:H(n) materialproperties by changing the microstructure of the μc-SiOx:H(n) to evaluate the potential of such stack implemented in SHJ solar cells and to identifythe limiting parameters of the protection layer in the device. With this approach we achieved a maximum open circuit voltage of 677mV and amaximum energy conversion efficiency of 18.9% for a planar solar cell.
000826578 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000826578 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000826578 7001_ $$0P:(DE-Juel1)162140$$aRichter, Alexei$$b1$$ufzj
000826578 7001_ $$0P:(DE-Juel1)130795$$aLentz, Florian$$b2$$ufzj
000826578 7001_ $$0P:(DE-HGF)0$$aNiermann, Tore$$b3
000826578 7001_ $$0P:(DE-Juel1)130238$$aFinger, Friedhelm$$b4$$ufzj
000826578 7001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b5$$ufzj
000826578 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b6$$ufzj
000826578 773__ $$0PERI:(DE-600)2006801-3$$a10.7567/JJAP.56.022302$$n2$$p022302$$tJapanese journal of applied physics$$v56$$x0021-4922$$y2017
000826578 8564_ $$uhttps://juser.fz-juelich.de/record/826578/files/Pomaska_2017_Jpn._J._Appl._Phys._56_022302.pdf$$yRestricted
000826578 8564_ $$uhttps://juser.fz-juelich.de/record/826578/files/Pomaska_2017_Jpn._J._Appl._Phys._56_022302.gif?subformat=icon$$xicon$$yRestricted
000826578 8564_ $$uhttps://juser.fz-juelich.de/record/826578/files/Pomaska_2017_Jpn._J._Appl._Phys._56_022302.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000826578 8564_ $$uhttps://juser.fz-juelich.de/record/826578/files/Pomaska_2017_Jpn._J._Appl._Phys._56_022302.jpg?subformat=icon-180$$xicon-180$$yRestricted
000826578 8564_ $$uhttps://juser.fz-juelich.de/record/826578/files/Pomaska_2017_Jpn._J._Appl._Phys._56_022302.jpg?subformat=icon-640$$xicon-640$$yRestricted
000826578 8564_ $$uhttps://juser.fz-juelich.de/record/826578/files/Pomaska_2017_Jpn._J._Appl._Phys._56_022302.pdf?subformat=pdfa$$xpdfa$$yRestricted
000826578 8767_ $$92017-01-22$$d2017-01-23$$ePublication charges$$jZahlung erfolgt
000826578 909CO $$ooai:juser.fz-juelich.de:826578$$popenCost$$pOpenAPC$$pVDB
000826578 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162141$$aForschungszentrum Jülich$$b0$$kFZJ
000826578 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162140$$aForschungszentrum Jülich$$b1$$kFZJ
000826578 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130795$$aForschungszentrum Jülich$$b2$$kFZJ
000826578 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130238$$aForschungszentrum Jülich$$b4$$kFZJ
000826578 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich$$b5$$kFZJ
000826578 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b6$$kFZJ
000826578 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000826578 9141_ $$y2017
000826578 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826578 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJPN J APPL PHYS : 2015
000826578 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826578 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826578 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826578 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826578 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826578 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826578 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000826578 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000826578 980__ $$ajournal
000826578 980__ $$aVDB
000826578 980__ $$aI:(DE-Juel1)IEK-5-20101013
000826578 980__ $$aUNRESTRICTED
000826578 980__ $$aAPC
000826578 981__ $$aI:(DE-Juel1)IMD-3-20101013