001     826578
005     20240712084519.0
024 7 _ |a 10.7567/JJAP.56.022302
|2 doi
024 7 _ |a WOS:000394525500001
|2 WOS
037 _ _ |a FZJ-2017-00797
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Pomaska, Manuel
|0 P:(DE-Juel1)162141
|b 0
|e Corresponding author
245 _ _ |a Wide gap microcrystalline silicon carbide emitter for amorphous silicon oxide passivated heterojunction solar cells
260 _ _ |a Bristol
|c 2017
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1508909607_25340
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Wide gap n-type microcrystalline silicon carbide [μc-SiC:H(n)] is highly suitable as window layer material for silicon heterojunction (SHJ) solar cellsdue to its high optical transparency combined with high electrical conductivity. However, the hot wire chemical vapor deposition (HWCVD) of highlycrystalline μc-SiC:H(n) requires a high hydrogen radical density in the gas phase that gives rise to strong deterioration of the intrinsic amorphoussilicon oxide [a-SiOx:H(i)] surface passivation. Introducing an n-type microcrystalline silicon oxide [μc-SiOx:H(n)] protection layer between theμc-SiC:H(n) and the a-SiOx:H(i) prevents the deterioration of the passivation by providing an etch resistance and by blocking the diffusion ofhydrogen radicals. We fabricated solar cells with μc-SiC:H(n)/μc-SiOx:H(n)/a-SiOx:H(i) stack for the front side and varied the μc-SiOx:H(n) materialproperties by changing the microstructure of the μc-SiOx:H(n) to evaluate the potential of such stack implemented in SHJ solar cells and to identifythe limiting parameters of the protection layer in the device. With this approach we achieved a maximum open circuit voltage of 677mV and amaximum energy conversion efficiency of 18.9% for a planar solar cell.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Richter, Alexei
|0 P:(DE-Juel1)162140
|b 1
|u fzj
700 1 _ |a Lentz, Florian
|0 P:(DE-Juel1)130795
|b 2
|u fzj
700 1 _ |a Niermann, Tore
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Finger, Friedhelm
|0 P:(DE-Juel1)130238
|b 4
|u fzj
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 5
|u fzj
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)143905
|b 6
|u fzj
773 _ _ |a 10.7567/JJAP.56.022302
|0 PERI:(DE-600)2006801-3
|n 2
|p 022302
|t Japanese journal of applied physics
|v 56
|y 2017
|x 0021-4922
856 4 _ |u https://juser.fz-juelich.de/record/826578/files/Pomaska_2017_Jpn._J._Appl._Phys._56_022302.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826578/files/Pomaska_2017_Jpn._J._Appl._Phys._56_022302.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826578/files/Pomaska_2017_Jpn._J._Appl._Phys._56_022302.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826578/files/Pomaska_2017_Jpn._J._Appl._Phys._56_022302.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826578/files/Pomaska_2017_Jpn._J._Appl._Phys._56_022302.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826578/files/Pomaska_2017_Jpn._J._Appl._Phys._56_022302.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:826578
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162140
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130795
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130238
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130233
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)143905
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b JPN J APPL PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21