000826606 001__ 826606
000826606 005__ 20240619083534.0
000826606 0247_ $$2doi$$a10.1021/acs.jpcb.6b10515
000826606 0247_ $$2ISSN$$a1089-5647
000826606 0247_ $$2ISSN$$a1520-5207
000826606 0247_ $$2ISSN$$a1520-6106
000826606 0247_ $$2WOS$$aWOS:000390072200015
000826606 0247_ $$2altmetric$$aaltmetric:14664837
000826606 0247_ $$2pmid$$apmid:27973815
000826606 037__ $$aFZJ-2017-00825
000826606 041__ $$aEnglish
000826606 082__ $$a530
000826606 1001_ $$0P:(DE-Juel1)167259$$aNovak, Sanja$$b0
000826606 245__ $$aInterplay of Noncovalent Interactions in Ionic Liquid/Sodium Bis(2-ethylhexyl) Sulfosuccinate Mixtures: From Lamellar to Bicontinuous Cubic Liquid Crystalline Phase
000826606 260__ $$aWashington, DC$$bSoc.$$c2016
000826606 3367_ $$2DRIVER$$aarticle
000826606 3367_ $$2DataCite$$aOutput Types/Journal article
000826606 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1485267809_15336
000826606 3367_ $$2BibTeX$$aARTICLE
000826606 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826606 3367_ $$00$$2EndNote$$aJournal Article
000826606 520__ $$aPhase transitions in mixtures of imidazolium based ionic liquid ([C12mim]Br) and anionic double tail surfactant, sodium bis(2-ethylhexyl) sulfosuccinate (AOT), were studied using a multitechnique approach. The system was primarily chosen for its expected ability to form a variety of lamellar and nonlamellar liquid crystalline phases which can transform into each other via different mechanisms. Depending on the bulk composition and total surfactant concentration, mixed micelles, coacervates, and lamellar and inverse bicontinuous cubic liquid crystalline phase were observed. Along with electrostatic attractions and geometric packing constraints, additional noncovalent interactions (hydrogen bonding, π–π stacking) enhanced attractive interactions and stabilized low curvature aggregates. At stoichiometric conditions, coexistence of coacervates and vesicles was found at lower, while bicontinuous cubic phase and vesicles were present at higher total surfactant concentrations. The phase transitions from a dispersed lamellar to inverse cubic bicontinuous phase occur as a consequence of charge shielding and closer packing of oppositely charged headgroups followed by a change in bilayer curvature. Transition is continuous with both phases coexisting over a relatively broad range of concentrations and very likely involves a sponge-like phase as a structural intermediate. To the best of our knowledge, this type of phase transition has not been observed before in surface active ionic liquid/surfactant mixtures.
000826606 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000826606 588__ $$aDataset connected to CrossRef
000826606 7001_ $$0P:(DE-HGF)0$$aMorasi Piperčić, Sara$$b1
000826606 7001_ $$0P:(DE-HGF)0$$aMakarić, Sandro$$b2
000826606 7001_ $$0P:(DE-HGF)0$$aPrimožič, Ines$$b3
000826606 7001_ $$0P:(DE-HGF)0$$aĆurlin, Marija$$b4
000826606 7001_ $$0P:(DE-HGF)0$$aŠtefanić, Zoran$$b5
000826606 7001_ $$0P:(DE-HGF)0$$aDomazet Jurašin, Darija$$b6$$eCorresponding author
000826606 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.6b10515$$gVol. 120, no. 49, p. 12557 - 12567$$n49$$p12557 - 12567$$tThe @journal of physical chemistry <Washington, DC> / B$$v120$$x1520-5207$$y2016
000826606 8564_ $$uhttps://juser.fz-juelich.de/record/826606/files/acs.jpcb.6b10515.pdf$$yRestricted
000826606 8564_ $$uhttps://juser.fz-juelich.de/record/826606/files/acs.jpcb.6b10515.gif?subformat=icon$$xicon$$yRestricted
000826606 8564_ $$uhttps://juser.fz-juelich.de/record/826606/files/acs.jpcb.6b10515.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000826606 8564_ $$uhttps://juser.fz-juelich.de/record/826606/files/acs.jpcb.6b10515.jpg?subformat=icon-180$$xicon-180$$yRestricted
000826606 8564_ $$uhttps://juser.fz-juelich.de/record/826606/files/acs.jpcb.6b10515.jpg?subformat=icon-640$$xicon-640$$yRestricted
000826606 8564_ $$uhttps://juser.fz-juelich.de/record/826606/files/acs.jpcb.6b10515.pdf?subformat=pdfa$$xpdfa$$yRestricted
000826606 909CO $$ooai:juser.fz-juelich.de:826606$$pVDB
000826606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167259$$aForschungszentrum Jülich$$b0$$kFZJ
000826606 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000826606 9141_ $$y2016
000826606 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826606 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826606 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826606 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826606 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826606 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826606 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000826606 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826606 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2015
000826606 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000826606 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826606 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000826606 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826606 920__ $$lyes
000826606 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000826606 980__ $$ajournal
000826606 980__ $$aVDB
000826606 980__ $$aUNRESTRICTED
000826606 980__ $$aI:(DE-Juel1)ICS-3-20110106