001     826606
005     20240619083534.0
024 7 _ |a 10.1021/acs.jpcb.6b10515
|2 doi
024 7 _ |a 1089-5647
|2 ISSN
024 7 _ |a 1520-5207
|2 ISSN
024 7 _ |a 1520-6106
|2 ISSN
024 7 _ |a WOS:000390072200015
|2 WOS
024 7 _ |a altmetric:14664837
|2 altmetric
024 7 _ |a pmid:27973815
|2 pmid
037 _ _ |a FZJ-2017-00825
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Novak, Sanja
|0 P:(DE-Juel1)167259
|b 0
245 _ _ |a Interplay of Noncovalent Interactions in Ionic Liquid/Sodium Bis(2-ethylhexyl) Sulfosuccinate Mixtures: From Lamellar to Bicontinuous Cubic Liquid Crystalline Phase
260 _ _ |a Washington, DC
|c 2016
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1485267809_15336
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Phase transitions in mixtures of imidazolium based ionic liquid ([C12mim]Br) and anionic double tail surfactant, sodium bis(2-ethylhexyl) sulfosuccinate (AOT), were studied using a multitechnique approach. The system was primarily chosen for its expected ability to form a variety of lamellar and nonlamellar liquid crystalline phases which can transform into each other via different mechanisms. Depending on the bulk composition and total surfactant concentration, mixed micelles, coacervates, and lamellar and inverse bicontinuous cubic liquid crystalline phase were observed. Along with electrostatic attractions and geometric packing constraints, additional noncovalent interactions (hydrogen bonding, π–π stacking) enhanced attractive interactions and stabilized low curvature aggregates. At stoichiometric conditions, coexistence of coacervates and vesicles was found at lower, while bicontinuous cubic phase and vesicles were present at higher total surfactant concentrations. The phase transitions from a dispersed lamellar to inverse cubic bicontinuous phase occur as a consequence of charge shielding and closer packing of oppositely charged headgroups followed by a change in bilayer curvature. Transition is continuous with both phases coexisting over a relatively broad range of concentrations and very likely involves a sponge-like phase as a structural intermediate. To the best of our knowledge, this type of phase transition has not been observed before in surface active ionic liquid/surfactant mixtures.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Morasi Piperčić, Sara
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Makarić, Sandro
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Primožič, Ines
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ćurlin, Marija
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Štefanić, Zoran
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Domazet Jurašin, Darija
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acs.jpcb.6b10515
|g Vol. 120, no. 49, p. 12557 - 12567
|0 PERI:(DE-600)2006039-7
|n 49
|p 12557 - 12567
|t The @journal of physical chemistry / B
|v 120
|y 2016
|x 1520-5207
856 4 _ |u https://juser.fz-juelich.de/record/826606/files/acs.jpcb.6b10515.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/826606/files/acs.jpcb.6b10515.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/826606/files/acs.jpcb.6b10515.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/826606/files/acs.jpcb.6b10515.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/826606/files/acs.jpcb.6b10515.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/826606/files/acs.jpcb.6b10515.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:826606
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167259
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM B : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-3-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21