000826680 001__ 826680
000826680 005__ 20210129225652.0
000826680 0247_ $$2doi$$a10.1016/j.molp.2016.04.015
000826680 0247_ $$2ISSN$$a1674-2052
000826680 0247_ $$2ISSN$$a1752-9859
000826680 0247_ $$2ISSN$$a1752-9867
000826680 0247_ $$2WOS$$aWOS:000386584900006
000826680 0247_ $$2altmetric$$aaltmetric:7277230
000826680 0247_ $$2pmid$$apmid:27150037
000826680 037__ $$aFZJ-2017-00898
000826680 041__ $$aEnglish
000826680 082__ $$a580
000826680 1001_ $$0P:(DE-HGF)0$$aWang, Zhenxing$$b0
000826680 245__ $$aDNA Damage-Induced Transcription of Transposable Elements and Long Non-coding RNAs in Arabidopsis Is Rare and ATM-Dependent
000826680 260__ $$aOxford$$bOxford Univ. Press$$c2016
000826680 3367_ $$2DRIVER$$aarticle
000826680 3367_ $$2DataCite$$aOutput Types/Journal article
000826680 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1485324911_2205
000826680 3367_ $$2BibTeX$$aARTICLE
000826680 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826680 3367_ $$00$$2EndNote$$aJournal Article
000826680 520__ $$aInduction and mobilization of transposable elements (TEs) following DNA damage or other stresses has been reported in prokaryotes and eukaryotes. Recently it was discovered that eukaryotic TEs are frequently associated with long non-coding RNAs (lncRNAs), many of which are also upregulated by stress. Yet, it is unknown whether DNA damage-induced transcriptional activation of TEs and lncRNAs occurs sporadically or is a synchronized, genome-wide response. Here we investigated the transcriptome of Arabidopsis wild-type (WT) and ataxia telangiectasia mutated (atm) mutant plants 3 h after induction of DNA damage. In WT, expression of 5.2% of the protein-coding genes is ≥2-fold changed, whereas in atm plants, only 2.6% of these genes are regulated, and the response of genes associated with DNA repair, replication, and cell cycle is largely lost. In contrast, only less than 0.6% of TEs and lncRNAs respond to DNA damage in WT plants, and the regulation of ≥95% of them is ATM-dependent. The ATM-downstream factors BRCA1, DRM1, JMJ30, AGO2, and the ATM-independent AGO4 participate in the regulation of individual TEs and lncRNAs. Remarkably, protein-coding genes located adjacent to DNA damage-responsive TEs and lncRNAs are frequently coexpressed, which is consistent with the hypothesis that TEs and lncRNAs located close to genes commonly function as controlling elements.
000826680 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000826680 588__ $$aDataset connected to CrossRef
000826680 7001_ $$0P:(DE-Juel1)145866$$aSchwacke, Rainer$$b1$$ufzj
000826680 7001_ $$0P:(DE-HGF)0$$aKunze, Reinhard$$b2$$eCorresponding author
000826680 773__ $$0PERI:(DE-600)2393618-6$$a10.1016/j.molp.2016.04.015$$gVol. 9, no. 8, p. 1142 - 1155$$n8$$p1142 - 1155$$tMolecular plant$$v9$$x1674-2052$$y2016
000826680 8564_ $$uhttps://juser.fz-juelich.de/record/826680/files/1-s2.0-S1674205216300521-main.pdf$$yRestricted
000826680 8564_ $$uhttps://juser.fz-juelich.de/record/826680/files/1-s2.0-S1674205216300521-main.gif?subformat=icon$$xicon$$yRestricted
000826680 8564_ $$uhttps://juser.fz-juelich.de/record/826680/files/1-s2.0-S1674205216300521-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000826680 8564_ $$uhttps://juser.fz-juelich.de/record/826680/files/1-s2.0-S1674205216300521-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000826680 8564_ $$uhttps://juser.fz-juelich.de/record/826680/files/1-s2.0-S1674205216300521-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000826680 8564_ $$uhttps://juser.fz-juelich.de/record/826680/files/1-s2.0-S1674205216300521-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000826680 909CO $$ooai:juser.fz-juelich.de:826680$$pVDB
000826680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145866$$aForschungszentrum Jülich$$b1$$kFZJ
000826680 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000826680 9141_ $$y2016
000826680 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826680 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000826680 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826680 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOL PLANT : 2015
000826680 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMOL PLANT : 2015
000826680 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826680 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826680 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000826680 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826680 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000826680 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000826680 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000826680 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826680 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000826680 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826680 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000826680 980__ $$ajournal
000826680 980__ $$aVDB
000826680 980__ $$aUNRESTRICTED
000826680 980__ $$aI:(DE-Juel1)IBG-2-20101118