| Hauptseite > Publikationsdatenbank > DNA Damage-Induced Transcription of Transposable Elements and Long Non-coding RNAs in Arabidopsis Is Rare and ATM-Dependent > print |
| 001 | 826680 | ||
| 005 | 20210129225652.0 | ||
| 024 | 7 | _ | |a 10.1016/j.molp.2016.04.015 |2 doi |
| 024 | 7 | _ | |a 1674-2052 |2 ISSN |
| 024 | 7 | _ | |a 1752-9859 |2 ISSN |
| 024 | 7 | _ | |a 1752-9867 |2 ISSN |
| 024 | 7 | _ | |a WOS:000386584900006 |2 WOS |
| 024 | 7 | _ | |a altmetric:7277230 |2 altmetric |
| 024 | 7 | _ | |a pmid:27150037 |2 pmid |
| 037 | _ | _ | |a FZJ-2017-00898 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 580 |
| 100 | 1 | _ | |a Wang, Zhenxing |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a DNA Damage-Induced Transcription of Transposable Elements and Long Non-coding RNAs in Arabidopsis Is Rare and ATM-Dependent |
| 260 | _ | _ | |a Oxford |c 2016 |b Oxford Univ. Press |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1485324911_2205 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Induction and mobilization of transposable elements (TEs) following DNA damage or other stresses has been reported in prokaryotes and eukaryotes. Recently it was discovered that eukaryotic TEs are frequently associated with long non-coding RNAs (lncRNAs), many of which are also upregulated by stress. Yet, it is unknown whether DNA damage-induced transcriptional activation of TEs and lncRNAs occurs sporadically or is a synchronized, genome-wide response. Here we investigated the transcriptome of Arabidopsis wild-type (WT) and ataxia telangiectasia mutated (atm) mutant plants 3 h after induction of DNA damage. In WT, expression of 5.2% of the protein-coding genes is ≥2-fold changed, whereas in atm plants, only 2.6% of these genes are regulated, and the response of genes associated with DNA repair, replication, and cell cycle is largely lost. In contrast, only less than 0.6% of TEs and lncRNAs respond to DNA damage in WT plants, and the regulation of ≥95% of them is ATM-dependent. The ATM-downstream factors BRCA1, DRM1, JMJ30, AGO2, and the ATM-independent AGO4 participate in the regulation of individual TEs and lncRNAs. Remarkably, protein-coding genes located adjacent to DNA damage-responsive TEs and lncRNAs are frequently coexpressed, which is consistent with the hypothesis that TEs and lncRNAs located close to genes commonly function as controlling elements. |
| 536 | _ | _ | |a 582 - Plant Science (POF3-582) |0 G:(DE-HGF)POF3-582 |c POF3-582 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Schwacke, Rainer |0 P:(DE-Juel1)145866 |b 1 |u fzj |
| 700 | 1 | _ | |a Kunze, Reinhard |0 P:(DE-HGF)0 |b 2 |e Corresponding author |
| 773 | _ | _ | |a 10.1016/j.molp.2016.04.015 |g Vol. 9, no. 8, p. 1142 - 1155 |0 PERI:(DE-600)2393618-6 |n 8 |p 1142 - 1155 |t Molecular plant |v 9 |y 2016 |x 1674-2052 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/826680/files/1-s2.0-S1674205216300521-main.pdf |y Restricted |
| 856 | 4 | _ | |x icon |u https://juser.fz-juelich.de/record/826680/files/1-s2.0-S1674205216300521-main.gif?subformat=icon |y Restricted |
| 856 | 4 | _ | |x icon-1440 |u https://juser.fz-juelich.de/record/826680/files/1-s2.0-S1674205216300521-main.jpg?subformat=icon-1440 |y Restricted |
| 856 | 4 | _ | |x icon-180 |u https://juser.fz-juelich.de/record/826680/files/1-s2.0-S1674205216300521-main.jpg?subformat=icon-180 |y Restricted |
| 856 | 4 | _ | |x icon-640 |u https://juser.fz-juelich.de/record/826680/files/1-s2.0-S1674205216300521-main.jpg?subformat=icon-640 |y Restricted |
| 856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/826680/files/1-s2.0-S1674205216300521-main.pdf?subformat=pdfa |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:826680 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)145866 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-582 |2 G:(DE-HGF)POF3-500 |v Plant Science |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2016 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MOL PLANT : 2015 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b MOL PLANT : 2015 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a Allianz-Lizenz / DFG |0 StatID:(DE-HGF)0400 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a No Authors Fulltext |0 StatID:(DE-HGF)0550 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBG-2-20101118 |k IBG-2 |l Pflanzenwissenschaften |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-2-20101118 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|