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Zusammenfassung 

Der netto CO2-Austausch zwischen terrestrischen Ökosystemen und der Atmosphäre (NEE) ist 
die Differenz von der CO2-Aufnahme durch Photosynthese und der CO2-Emission durch 
Respiration. NEE ist ein wichtiger Indikator für die Ökosystemfunktion als Kohlenstoffquelle 
oder senke und eine zentrale Variable für das Verständnis und die Vorhersage von 
Rückkopplungseffekten zwischen Klima- und Ökosystemveränderungen. NEE wird 
üblicherweise durch mikrometeorologische Methoden wie Eddy-Kovarianz (EC) gemessen. 
Auf kontinentalen oder globalen Skalen werden Landoberflächenmodelle (LSMs) wie das 
Community Land Model (CLM) für die Vorhersage von NEE und anderen Flüssen angewendet, 
unter Simulation des gekoppelten Kohlenstoff-, Stickstoff-, Wasser-, und Energiekreislaufes 
der Landoberfläche. Die Verbesserung von NEE-Vorhersagen auf regionalen Skalen ist wichtig 
für die Unterstützung der zukünftigen Entscheidungsfindung in Klimapolitik und 
Umweltplanung. Ein zentrales Ziel dieser Dissertation war daher die Abschätzung von NEE-
Flüssen für das Rureinzugsgebiet, welches repräsentativ ist für viele Agrarland-dominierte 
Regionen in Mittelwesteuropa, durch Kombination von gemessenen EC Daten und CLM. Da 
sowohl EC-Messungen als auch LSM-Vorhersagen unsicher sind, werden seit einer Dekade 

- Methoden wie Parameterabschätzung verwendet, um die 
Unsicherheiten von Kohlenstoffflüssen zu verringern. Um EC- -data 

sachgemäß anzuwenden, ist eine 
Abschätzung der Messunsicherheit erforderlich.  
 
Dementsprechend wurde im ersten Teil der Dissertation die NEE-Messunsicherheit für einen 
Graslandstandort im Rureinzugsgebiet untersucht. Es gibt zwar viele Ansätze zur Abschätzung 
dieser Messunsicherheit, jedoch hat sich bislang keiner für eine breite Anwendung 

-
simultan an zwei benachbarten Türmen gemessenen Flüsse basiert, ist einer der bekanntesten 
Ansätze. Diese Methode liefert lineare Regressionsfunktionen zwischen der Flussmagnitude 
und dem Zufallsfehler, die üblicherweise von Wissenschaftlern für eine schnelle Abschätzung 
der M -

e robuste Ergebnisse geliefert. Aufgrund der häufig widersprüchlichen 
Voraussetzungen von statistischer Unabhängigkeit (nicht überlappender Footprint) und 
homogenen Bedingungen ist jedoch Vorsicht geboten in Bezug auf die Wahl einer 
angemessenen Distanz der zwei Türme. Aus diesem Grund wird hier eine Erweiterung der 

- s synchron 
von zwei EC-Stationen gemessenen NEE-Flusses korrigiert. Der Einfluss der Distanz zwischen 
den Stationen wurde mittels einer variablen Station untersucht, welche in Abständen von 8 m 
bis 34 km von der permanenten EC-Station auf Grasland installiert wurde. Für die Evaluierung 
wurden Unsicherheitswerte von einer rohdatenbasierenden Referenzmethode verwendet. Die 
hier eingeführte Korrektur von systematischen Flussdifferenzen, angewendet auf 
wettergefilterte Daten, hat für alle Distanzen (außer 8 m) deutlich die Überschätzu -

-Messunsicherheit vermindert (79% bei 34 km Distanz bis 100% bei 95 m 
-

gegenüber der Distanz reduziert wurde, welches mit einer verbesserten Anwendbarkeit der 
erweiterten Methode verbunden ist.  
  
Im zweiten Teil wurden NEE-Daten verwendet, die an EC-Standorten innerhalb oder nahe des 
Rureinzugsgebietes gemessen wurden, um acht ökologische CLM-Schlüsselparameter 
abzuschätzen. Dazu wurde die Markov Chain Monte Carlo (MCMC) Methode DREAM 
(DiffeRential Evolution Adaptive Metropolis) verwendet. Die Parameter wurden separat für 
vier EC-Standorte mit unterschiedlichen Landnutzungen abgeschätzt: C3-Gras, C3-Getreide, 
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Laubwald und Nadelwald. Dies sind die weitverbreitetsten Pflanzenfunktionstypen (PFTs) im 
Rureinzugsgebiet. Fünf der abgeschätzten Parameter sind PFT-spezifisch, die anderen drei sind 
Modelkonstanten. Die Parameter wurden separat für eine Einjahresperiode durchgeführt, sowie 
für die einzelnen Jahresseiten innerhalb dieses Jahres. Im Falle der Einjahresperiode wurde ein 
zusätzliches Experiment durchgeführt, bei dem Multiplikationsfaktoren für CLM-
Anfangsbedingungen (Kohlenstoff-Stickstoff-Pools und Blattflächenindex, LAI) gemeinsam 
mit den Parametern abgeschätzt wurden. Die abgeschätzten Parameter wurden mit gemessenen 
NEE-Daten von vier weiteren EC-Standorten evaluiert, die etwa 600 km von den 
Ursprungsstandorten entfernt waren. Es wurde gezeigt, dass die Parameter saisonal variieren, 
welches mit den ermittelten Korrelationen zwischen CLM-Parametern und den 
Anfangszustandsfaktoren zusammenhängt. Die neuen Parameterwerte haben die NEE-
Vorhersagen deutlich verbessert, insbesondere wenn sie auf saisonaler Basis abgeschätzt 
wurden. In diesem Fall war die relative Differenz der NEE-Jahressumme (modelliert vs. 
beobachtet, gemittelt über alle Standorte) 50% geringer im Vergleich zum Referenzlauf mit 
Standardparametern. Eine wesentliche Schlussfolgerung war, dass die abgeschätzten Parameter 
im Falle der Wald-PFTs (in Zeit und im Raum) robust waren, aber auch strukturelle 
Modellfehler kompensiert haben, insbesondere im Falle von C3-Gras und C3-Getreide.  
 
Im dritten und letzten Teil dieser Dissertation wurden neue CLM-Ökosystemparameter 
abgeschätzt und für das Rureinzugsgebiet evaluiert. Ein Unterschied zur vorherigen Studie war, 
dass diesmal nur die fünf PFT-spezifischen Parameter abgeschätzt wurden. Die Parameter 
wurden anschließend auf alle Rasterzellen des Rureinzugsgebietes angewendet, in welchen 
mindestens eine der vier PFTs vorkam. Die abgeschätzten Parameter wurden mit NEE-Daten 
evaluiert, die auf sieben EC Standorten im Rureinzugsgebiet gemessen wurden. Zusätzlich 
wurden LAI-Vorhersagen mittels RapidEye-Daten evaluiert. Ein zentrales Ergebnis war, dass 
die abgeschätzten DREAM-CLM-Parameter die Differenz zwischen der beobachteten und der 
simulierten NEE-Summe der Evaluierungsperiode (Dez. 2012  Nov. 2013) um 23% reduziert 
haben, verglichen zu den Standardparametern. Daher wurde geschlussfolgert, dass die CLM-
Abschätzung der NEE-Jahresbilanz mit den abgeschätzten Parametern verlässlicher ist als mit 
globalen Standardparametern. Außerdem war die Übereinstimmung von beobachteten und 
modellierten LAI-Daten mit abgeschätzten Parametern durchschnittlich 59% höher. Diese 
Arbeit verdeutlicht, wie stark CLM-Parameter, Modellzustände wie LAI und 
Kohlenstoffflussvorhersagen verknüpft sind. Es wurde gezeigt, dass die LAI- und NEE-
Vorhersagen für C3-Gras und C3-Getreide wesentlich sensitiver gegenüber unsicherer 
Anfangszustände und atmosphärischer Inputdaten waren im Vergleich zu Wald. Dies führte zu 
deutlichen Standardabweichungen (STD) der modellierten NEE-Jahressumme, welche 
zwischen 24.1 und 225.9 gC m-2 y-1 schwankte, im Vergleich zu STD = 0.1  3.4 gC m-2 y-1 
(nur Effekt der Parameterunsicherheit, ohne zusätzliche Störung von CLM Anfangszuständen 
und meteorologischen Inputdaten). Es wurde geschlussfolgert, dass eine bessere 
Modeldarstellung PFT-spezifischer Prozesse wie Pflanzenphänologie und landwirtschaftliches 
Management notwendig ist, um Ergebnisse der Parameterabschätzung und die Verlässlichkeit 
der CLM-Kohlenstoffflussvorhersagen für das Einzugsgebiet weiter zu verbessern. 
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Reliable estimates of net ecosystem exchange (NEE) are essential for environmental research 

and political decision making, e.g. to reduce the uncertainty of predicted climate trends. NEE, 

the net CO2 flux between terrestrial ecosystems and the atmosphere, is the difference between 

the CO2 release by ecosystem respiration and the CO2 uptake by plants during photosynthesis 

or gross primary production (GPP) (Baldocchi, 2003). In the field, NEE is measured by eddy 

covariance (EC) stations along with the sensible and the latent heat flux and various 

meteorological variables. The global EC tower network FLUXNET comprises over 650 sites 

of different land cover types (http://fluxnet.ornl.gov/). Eddy covariance flux measurements are 

prone to various error sources. For example, one basic assumption of the EC method is a fully 

developed turbulence in the lower atmospheric boundary layer (Baldocchi, 2001). This 

assumption is not always met, particularly during night when wind velocities are low, such that 

nighttime data is often rejected for further analysis (Barr et al., 2006). For this and other reasons, 

measured NEE time series usually contain many gaps. However, the estimated annual NEE 

sums and net carbon balances require complete NEE time series. Thus, various studies applied 

and enhanced gap filling techniques including non-linear regression methods (e.g. Falge et al., 

2001; Hollinger et al., 2004) or artificial neural networks (ANNs) (Papale and Valentini, 2003; 

Moffat et al., 2007). While most of those methods succeed in generating consistent estimates 

of annual NEE sums, the reliability of nighttime data remains low (Moffat et al., 2007). In terms 

of measured EC fluxes, a distinction is made between systematic errors, which are mostly 

corrected during EC data processing, and random errors or uncertainties, which can be 

quantified and characterized by probability distribution functions but are impossible to correct 

(Dragoni et al., 2007; Aubinet et al., 2011; Richardson et al., 2012). Depending on the height 

of the measurement devices and other factors such as wind velocities and atmospheric stability, 

the along-wind distance of an EC flux footprint ranges from about 500 m to more than 1.5 km 

(Rannik et al., 2012). Thus, EC flux measurements are usually limited to a relatively small area. 

Chen et al. (2012) showed that the 90% cumulative annual footprint area of 12 EC towers 

located at Canadian sites (with different land cover including grassland and forest) varied 

between 1.1 km2 to 5.0 km2, and that the representativeness of EC fluxes strongly depends on 

the land surface heterogeneity. Because the effect of the different environmental drivers on 

biogeochemical fluxes is spatially and temporally highly variable and nonlinear, conventional 

interpolation methods are not suited to upscale NEE from the EC footprint scale to larger areas 

(Chen et al., 2009; Stoy et al., 2009). Errors in measured EC time series and the low spatial 
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density of EC stations further limit the possibilities to upscale NEE with sorely data-based 

approaches. In order to obtain complete time series of spatially distributed NEE data for larger 

areas, terrestrial ecosystem models or land surface models are crucial. 

Land surface models (LSMs) such as the Community Land Model CLM (Oleson et al., 2013) 

simulate the coupled carbon, nitrogen, water and energy cycles of the land surface, and with it 

key processes which determine carbon, latent heat (LE) and sensible heat (H) fluxes between 

terrestrial ecosystems and the atmosphere, including transpiration, evaporation, photosynthesis 

and respiration. LSMs are a critical component of larger integrated models (Earth system 

models, prognostic global climate models), which are used to predict future changes of the earth 

system, including land, ocean, and atmosphere (IPCC, Stocker et al., 2013). CLM for example 

is the land component of the Community Earth System Model (CESM). Thus, LSMs are 

essential to understand and predict climate-ecosystem interactions and feedbacks as well as the 

effect of land use change. In this context a major question to be answered is how the land carbon 

sink  including vegetation dynamics and soil carbon stocks  changes with climate and land 

use change (e.g. Quéré et al., 2012; Arora et al., 2013; Brovkin et al., 2013; Todd-Brown et al., 

2014). In contrast to several other LSMs, CLM is an open source model, sponsored by the 

National Science Foundation and the U.S. Department of Energy. It is maintained by the 

National Center for Atmospheric Research (NCAR), and embedded in a continuous 

development process of a large user community. At present, CLM and other LSM have mainly 

been applied at global or continental scales with a coarse spatial resolution between about 0.25° 

and 1.5° (e.g. Stöckli et al., 2008; Bonan et al., 2011; Lawrence et al., 2012). In case of CLM, 

the respective standardized input data are available online. The estimation of carbon fluxes for 

single regions is essential to improve the understanding and predictability of CO2 dynamics and 

their drivers (Desai et al., 2008). However, regional scale applications of LSMs are very rare, 

not least because high resolution input data is often not available, and, because the 

implementation of a new model set-up to a specific region is relatively time consuming. Han et 

al. (2014) for example applied CLM on a regional scale in a data assimilation study with focus 

on soil moisture using synthetic data. Regional studies with focus on carbon fluxes are not 

published yet.  

LSM predictions of carbon fluxes and stocks are still subject to a high degree of uncertainty due 

to (i) model structural deficits related to an imperfect and incomplete model representation of 

the biogeochemical processes (Todd-Brown et al., 2012; Foereid et al., 2014), (ii) poorly 

constrained model parameters (Abramowitz et al., 2008; Beven and Freer, 2001; Todd-Brown 

et al., 2013), (iii) errors in the representation of initial states which are generated via the model 
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spin-up (Carvalhais et al., 2010; Kuppel et al., 2012), as well as (iv) errors in both atmospheric 

and land surface input data. Equifinality, i.e. multiple optimal parameter sets that generate 

equally good model outputs, was identified as a major source of errors in simulated land surface 

fluxes including NEE (Schulz et al., 2001; Williams et al., 2009; Luo et al., 2009; Todd-Brown 

et al., 2013). Equifinality increases with model complexity and increasing number of model 

parameters, and is therefore common in land surface models (Beven and Freer, 2001; Santaren 

et al., 2007).  

In order to reduce the impact of uncertainties in both models and observed data, model-data 

fusion approaches have increasingly been applied since a decade to 

 and to reduce the uncertainty of carbon flux 

predictions. The major model-data fusion approaches that have been used to improve modeled 

land surface fluxes with EC data are (i) Bayesian global search algorithms based on a random 

generator such as the Markov Chain Monte Carlo (MCMC) Method (Braswell et al., 2005; 

Knorr and Kattge, 2005; Richardson et al., 2010b; Keenan et al., 2012b; Hararuk et al., 2014), 

(ii) approaches based on gradient descent algorithms including variational data assimilation 

methods (Wang et al., 2001; Wang, 2007; Santaren et al., 2007; Verbeeck et al., 2011; Kuppel 

et al., 2012), and (iii) sequential data assimilation methods (Williams et al., 2005; Mo et al., 

2008; Hill et al., 2012). In contrast to the other two methods, sequential data assimilation 

approaches such as the ensemble Kalman filter method (Evensen, 2003) assimilate the observed 

data sequentially and accordingly update the model state vector, which may or may not include 

parameters. Only the gradient-based studies estimated parameters for more complex LSMs 

similar to CLM, while most of the model-data fusion studies constrained simple ecosystem 

models. Wang et al. (2001) estimated three or four parameters of the CSIRO Bioshere Model 

(CBM), including the maximum rate of carboxylation and electron transport at 25°C (Vcmax25, 

and jmax25, respectively) using NEE, LE and ground heat flux data of several weeks measured 

at six EC sites. The approach by Wang (2007) is very similar. They found that Vcmax25 and jmax25 

vary seasonally for deciduous forest and that CBM with optimized parameters predicted NEE 

Santaren et al. (2007), Verbeeck et al. (2011) and Kuppel et al. 

(2012) estimated parameters of the ORCHIDEE model (Krinner et al., 2005), also using EC 

data and a gradient-based algorithm that minimizes a cost function, i.e. the model-data misfit. 

Santaren et al. (2007) optimized 12 ORCHIDEE parameters for a pine forest site in France and 

found that parameters related to photosynthesis and energy balance can be robustly inferred 

from the EC flux data, while biological parameters controlling respiration are poorly 

constrained and remain strongly sensitive to the initial carbon pools settings. Verbeeck et al. 
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(2011) estimated parameters for one site in the Amazon forest and found that soil depth and 

root profile parameters significantly improved both simulated NEE and LE. Kuppel et al. (2012) 

estimated 21 ORCHIDEE parameters with measured NEE and LE data from twelve temperate 

- )-optimization, i.e. assimilating 

data from several sites simultaneously, -

for each site. They show that MS-optimization reduces model-data misfit as well as single site 

optimization. Kuppel et al. (2014) extended this optimization approach to seven groups of PFTs 

in order to improve global scale NEE and LE predictions with ORCHIDEE. They found largest 

reductions of the model-data misfit for temperate and boreal broadleaf forests, and in case of 

temperate needleleaf forest and C3-grass, single-site optimization reduced the misfit more than 

MS-optimization. Kuppel et al. (2013) explored the structure of the observation error (defined 

here as sum of the model error and the measurement error) on simulated land surface fluxes 

with parameter optimized with NEE data of 12 temperate deciduous broadleaf forest sites. 

Santaren et al. (2013) assimilated several years of NEE and LE for the temperature beach forest 

site Hesse in France, to estimate ORCHIDEE parameters. They compared a gradient-based 

algorithm and a generic stochastic search algorithm and showed that single site model-data 

fusion provided better results with the generic Monte Carlo-based method. The different studies 

show that complex LSMs can be successfully constrained with EC data. However, it is 

highlighted that only a few model parameters can be well constrained and substantially reduce 

misfit between observed and simulated NEE and LE fluxes (Wang et al., 2001; Verbeeck et al., 

2011). Most model-data fusion studies for carbon flux estimation focus on single forest 

ecosystems (Braswell et al., 2005; Williams et al., 2005; Santaren et al., 2007; Keenan et al., 

2012b; Mo et al., 2008; Verbeeck et al., 2011; Kato et al., 2012; Kuppel et al., 2012, 2013; 

Rosolem et al., 2013; Santaren et al., 2013). Regional scale model-data fusion approaches to 

improve carbon flux estimates are very rare. Xiao et al. (2014) applied a simple ecosystem 

model at the regional scale and used a MCMC method to estimate the effect of parameter 

uncertainty on the modeled carbon fluxes for different plant functional types. Similar parameter 

estimation approaches for CLM have not been published yet.  

 

Several attempts have been made to estimate the uncertainty of modeled carbon fluxes or stocks 

by combining different land surface models (Huntzinger et al., 2012; Piao et al., 2013; Fisher 

et al., 2014). However, attempts to analyze and quantify the uncertainty of carbon flux estimates 

for single LSMs under consideration of the different model error sources are very rare. Most of 

the cited model-data fusion approaches sorely consider parameter uncertainty, which leads to 
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an underestimation of the total model uncertainty. It was shown that LSM parameter estimates 

are not constant over time but vary seasonally and inter-annually (Wang et al., 2007; Mo et al., 

2008; Rosolem et al., 2013). This highlights that uncertainty of parameters is related to deficits 

in the model structure and uncertain model states (Carvalhais et al., 2010; Kuppel et al., 2012). 

Therefore, single contributions of different error sources to the overall uncertainty in predicted 

NEE are difficult to quantify. For example, Keenan et al. (2012b) showed that the leaf area 

index (LAI) and the parameter Vcmax25 are closely linked in the forest ecosystem model 

. In CLM, Vcmax25 is also a key parameter for both carbon flux predictions and the 

prognostic simulation of the LAI , and was found to be highly uncertain (Bonan et al., 2011; 

Göhler et al., 2013). Williams et al. (2009) show that the discussed model error sources 

(parameter uncertainty, initial states, spatial and temporal variations of parameters, etc.) are 

major challenges also when improving land surface models with EC data using model-data 

fusion techniques. 

 

Against this background, this work is aiming at combining the Community Land Model (CLM) 

and measured EC data in order to obtain regional NEE estimates for the Rur catchment under 

consideration of both measurement and model uncertainty. Therefore, CLM version 4.5 in 

active biogeochemistry (BGC) mode (CLM4.5BGC) was applied. The Rur catchment is located 

in the Belgian-Dutch-German border region. Like many areas in Europe, the catchment is 

predicted to encounter an increase of mean annual temperature and a decrease of freezing days 

in the future. Associated with climate change, vegetation periods are expected to start earlier 

and to prolong later . This would also affect the 

regional carbon balance (e.g. higher CO2 uptake by GPP versus extra CO2 emissions due to 

increased respiration rates) and imply feedbacks on meteorological and hydrological processes 

(e.g. evapotranspiration). Accordingly, reliable estimates of present carbon balances at regional 

scales are crucial for environmental management and political decision making. Because global 

default parameters in LSMs are uncertain and cannot be assumed valid for specific locations or 

regions, they require careful estimation if the model is applied for new sites or areas. A suitable 

parameter estimation approach, which has been successfully applied in many research fields 

including ecohydrology (Dekker et al., 2012), and biogeochemistry (e.g. Dumont et al., 2014; 

Scharnagl et al., 2010), DiffeRential Evolution Adaptiv (Vrugt 

and Robinson, 2007; Ter Braak and Vrugt, 2008; Laloy and Vrugt, 2012; Vrugt, 2016). 

DREAM is a multi-chain MCMC method. Because high dimensional nonlinear models like 

CLM are likely to suffer from complex posterior multivariate parameter distributions (Beven 
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and Freer, 2001; Williams et al., 2009; Vrugt, 2016), DREAM has several crucial advantages 

compared to e.g. gradient-based methods, for example because it is much less prone to become 

stuck in a local minimum during the optimization process (Santaren et al., 2007; Williams et 

al., 2009). Sequential data assimilation methods have only been successfully applied yet to 

estimate carbon fluxes with simple ecosystem models (Williams et al., 2005; Mo et al., 2008; 

Hill et al., 2012) or to estimate model states like soil moisture with complex LSMs, including 

CLM (Han et al., 2014). The Data Assimilation Research Testbed DART (Anderson et al., 

2009) provided by NCAR is coupled to CLM and allows for the estimation of model states with 

EC data. However, for climate applications it is important to estimate the uncertain and 

unknown ecosystem parameters in order to correct long-term projections of NEE. Besides, as 

highlighted e.g. by Hill et al. (2012), sequential data assimilation benefits from longer 

measurement time series in order to obtain stable estimates, while MCMC-based estimates are 

less dependent on the length of the time series. The fact that long measurement time series were 

not available for the EC sites in the Rur catchment was another reason why DREAM was 

considered most suited to estimate CLM parameters for the Rur catchment. A main reason, why 

MCMC-based approaches have not been applied yet to estimate LSM parameters is the high 

computational demand of this method.  

The objectives of this work were to: 

1. determine and increase the reliability of the uncertainty estimates of eddy covariance 

NEE measurements, which is an important prerequisite for using EC data in a model-

data fusion approach; 

2. Couple DREAM with CLM, i.e. develop a new (and probably the first) parameter 

estimation framework for CLM to constrain important ecosystem model parameters and 

reduce the model-data misfit under consideration of parameter uncertainty; 

3. Identify key ecological CLM parameters and estimate those parameters with DREAM 

for single sites of different PFTs using measured NEE data, and evaluate parameter 

estimates and test their transferability to other sites. The role of uncertain initial model 

states is evaluated in this context; 

4. Evaluate the feasibility of upscaling NEE data to the catchment scale with CLM and 

updated DREAM parameter estimates under additional consideration of different 

sources of model uncertainty (atmospheric input data and initial model conditions).  

Chapter 2 briefly summarizes the relevant theory of the eddy covariance method, CLM and 

DREAM. Chapter 3 is dedicated to the uncertainty estimation of eddy covariance NEE data and 

introduces an extension of the classical two-tower approach (Hollinger et al., 2004; Hollinger 
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and Richardson, 2005; Richardson et al., 2006). Random error estimates of measured NEE 

obtained from the two-tower approach are based on the standard deviations of the fluxes 

measured simultaneously at two nearby EC towers. Basic underlying assumptions of this 

method are (i) statistical independence of the measured data, i.e. non-overlapping footprints, 

and (ii) identical or very similar environmental conditions in the footprint of both EC towers. 

Those competing requirements challenge the applicability of the method and hamper the 

definition of an appropriate tower distance. The proposed extension removes systematic 

differences of measured NEE, which should not be attributed to the random error estimate. The 

role of the tower distance was investigated with help of a roving station, which was separated 

in five distances between 8 m and 34 km from a permanent EC tower. Moreover, the effect of 

an additional filter for similar weather conditions applied to the NEE dataset was tested. The 

two-tower based NEE random error estimates were compared to the corresponding random 

error determined with a different, raw-data based approach presented in Mauder et al. (2013). 

Chapter 4 presents how NEE data measured at single EC tower sites were used to estimate eight 

key ecological CLM parameters, which were previously selected by means of a simple 

sensitivity analysis. The first main objective was to improve CLM NEE predictions for different 

plant functional types (PFTs) in the central-west region of Europe including the Rur catchment. 

Therefore, parameters were estimated with DREAM separately for four sites of different land 

use: (1) grassland, (2) C3-crop, (3) evergreen coniferous forest, and (4) broadleaf deciduous 

forest. Those are the four most widespread PFTs in the Rur catchment. In order to evaluate the 

transferability of the parameter estimates to other sites and thus the potential of upscaling EC 

carbon flux measurements with DREAM-CLM, NEE data of four additional FLUXNET sites 

were used. Each evaluation site was located about 600 km away from the corresponding 

parameter estimation site of the same PFT. In order to test how strongly the parameter estimates 

vary seasonally, parameters were estimated based on a complete one year time series of NEE 

data, and also individually for each season in that year. Related to that, in order to test how 

strongly parameter estimates depend on / correlate with the initial model states, an additional 

experiment was conducted, where the eight parameters were estimated jointly with four 

multiplication factors for the initial model states (carbon-nitrogen pools and LAI).  

Chapter 5 focusses on the evaluation of CLM4.5BGC carbon flux and LAI predictions for the 

Rur catchment at a spatial resolution of 1 km2 when applying DREAM parameter estimates. 

New posterior probability distribution functions (pdfs) were determined, this time only for the 

five PFT-specific parameters, using the same DREAM-CLM set-up and the same one year NEE 

time series of the four sites as in chapter 4. Based on the results of chapter 4 and other studies 
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(e.g. Keenan et al., 2012b) the hypothesis was that the NEE-based parameters estimates strongly 

affect and potentially improve simulated LAI. This was tested here. Half-hourly NEE data of 

seven sites within the Rur catchment and LAI data obtained from RapidEye were used for the 

evaluation of the model outputs with and without updated parameters. In addition, the 

uncertainty of modeled NEE and LAI was explicitly evaluated with a second CLM ensemble 

where not only parameters were uncertain (sampled from the posterior pdfs estimated by 

DREAM), but also initial states and atmospheric input data.  

Finally, chapter 6 provides a summary of the main results and chapter 7 an outlook for future 

research. 
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2.1. THE EDDY COVARIANCE (EC) METHOD 

The vertical energy fluxes (latent heat, 

sensible heat) and NEE fluxes between 

the land surface and the atmosphere are 

measured by the eddy covariance 

method. Eddy covariance stations 

(Figure 2.1) measure the wind speed in 

three dimensions and simultaneously 

the gas concentration with an infrared gas analyzer (Pumpanen et al., 2009) at a temporal 

resolution of e.g. 10 or 20 Hz. EC measurement devices are located above canopy, usually in 

about 1-3 m height at grassland or agricultural sites and in about 20-40 m at forest sites (e.g. 

Chen et al., 2012). In the lowest atmospheric boundary layer close to the land surface turbulent 

flow predominates. Accordingly, the eddy covariance method determines the turbulent mass 

transfer assuming that all vertical mass transport within this part of the boundary layer is 

determined he EC-method assumes that horizontal 

divergence of flow and advection are negligible. Therefore, the terrain where EC stations are 

located is ideally flat and the land surface homogeneous (Baldocchi, 2001). The EC method is 

amongst others based on the mass conservation principle, which requires the assumption of 

steady state conditions of the meteorological variables (Baldocchi, 2003). By sampling both 

wind speed in three dimensions and the CO2 concentration over time, the vertical net flux 

density F of CO2 [mmol m-2 s-1] across the canopy-atmosphere interface can be calculated as a 

function of the dry air molar density [mmol m-3], the CO2 mixing ratio c [mmol (CO2) / mmol 

(dry air)] and the vertical wind velocity  [m s-1]: 

 (2.1) 

The prime denotes fluctuations around the mean; the bar the average over the measurement 

interval (e.g. half hour), i.e.: 

 

Figure 2.1: Eddy covariance station. 
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 (2.2) 

with n being the number of measurements during the measurement interval. The CO2 mixing 

ratio c is equal to the ratio of the CO2 molar density to the dry air molar density , implying 

the necessity of a correction (Webb et al., 1980) if CO2 concentration was originally measured 

per unit volume. 

The correction for systematic measurement errors and the quantification of the measurement 

uncertainty is a prerequisite to model-data fusion (Richardson et al., 2006, 2008). Before the 

measured EC data can be used for scientific purposes, it requires careful post processing and 

undergoes various correction steps. The TK3.1 software (Mauder and Foken, 2011) for example 

was used for the processing of the EC data measured in the Rur catchment. This software also 

provides a standardized flagging system, which classifies the data into high, moderate or low 

quality. The final NEE flux data provided after processing is still subject to systematic and 

random errors, which are briefly summarized in the following.  

2.1.1. Systematic errors 

Recent studies identified two main types of systematic errors in eddy covariance CO2 flux 

measurements:  

1. During night, respiration is often underestimated due to low wind conditions and a 

temperature inversion which hinders the upward transport (Baldocchi, 2003). Hence, 

nighttime data is commonly rejected for further analysis (Barr et al., 2006). Goulden et al. 

(1996) introduced a friction velocity threshold as disqualifier. This threshold however is not 

universal for CO2 fluxes but ranges from 0.1 to 0.6 m s-1 (Baldocchi, 2003).  

2. The sum of measured energy fluxes (latent heat, sensible heat and ground heat flux) is often 

found to be 10-30% smaller than the measured net radiation, which refers to an energy 

closure problem (Wilson et al., 2002; Foken et al., 2006; Foken, 2008). Possible reasons for 

this energy balance deficit (EBD) are (a) the underestimation of turbulent energy fluxes 

and/or a overestimation of the available energy (Wilson et al., 2002), (b) the negligence or 

incorrect estimation of the energy storage in the canopy and the soil (Kukharets et al., 2000) 

and, probably most important, (c) the land surface heterogeneity which can even on flat 

terrain induce advection (Panin et al., 1998; Foken et al., 2006; Liu et al., 2006; Finnigan, 

2008). The latter is closely linked to (d) an omission of low or high frequency turbulent 



 11 

 

Chapter 2: Theory and Methods 

fluxes (Wilson et al., 2002; Foken et al., 2006). Commonly, measured energy fluxes are 

corrected for EBD. However, the correction method used and the ratio to which EBD 

accounts for the sensible and latent heat correction remains controversial. Often the Bowen 

Ratio is used for the correction (e.g. Todd et al., 2000; Twine et al., 2000), but alternative 

approaches have been proposed (e.g. Hendricks Franssen et al., 2010). Some of the most 

recent studies apply H post closure methods (Gayler et al., 2013; Imukova et al., 2015), e.g. 

letting the latent heat flux unaltered and adding the gap fully to the measured sensible heat 

flux (H). Because atmospheric CO2 transport processes are very similar to those of the 

energy fluxes and because their calculation with the eddy covariance method is based on 

the same physical assumptions, the energy balance closure problem probably also results in 

systematic errors of the CO2 flux measurements (Twine et al., 2000; Wilson et al., 2002; 

Mauder et al., 2010). For example, Wilson et al. (2002) found that nocturnal respiration was 

significantly less when the energy balance deficit was larger. However, the correction of 

measured CO2 fluxes with EBD is not widely accepted, because the connection between 

energy- and CO2 deficits has not been firmly proven and depends on the actual reason for 

the imbalance (Wilson et al., 2002; Barr et al., 2006; Foken et al., 2006).  

2.1.2. Random errors 

The random error is the remaining uncertainty after the measured data has been corrected for 

systematic errors and originates e.g. from instrumentation or calibration errors, flux footprint 

heterogeneity and turbulence sampling errors (Flanagan and Johnson, 2005). The uncertainty 

cannot be corrected or predicted like systematic errors due to the random character but can be 

quantified by statistical analysis and characterized by probability distribution functions 

(Richardson et al., 2012). The most common methods that have been proposed to estimate the 

uncertainty of CO2 flux eddy covariance measurements are: 

1. The two-tower  - , where simultaneous flux measurements of 

two towers with non- overlapping footprints (several hundred meters to several kilometers 

distance) are analyzed (Hollinger et al., 2004). It is assumed that environmental conditions 

for both towers are similar. The difference of the measured flux values then allows for the 

uncertainty estimation.  

2. The one- tower  - based on the two-tower approach, but in 

this case fluxes measured on 

(wind speed, temperature, photosynthetic active radiation) of only one EC tower are 

compared (Richardson et al., 2006). 
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arbitrary but should guarantee that flux differences are not arising from varying boundary 

conditions. Because most often environmental condition are not the same on two sequential 

days (Liu et al., 2006), the applicability of this method suffers from a lack of data. 

3. With the model residual approach CO2 fluxes are simulated with a simple model. The 

method is based on the assumption that the model error is negligible. The model residual is 

then attributed to the random measurement error (Hollinger and Richardson, 2005; Dragoni 

et al., 2007; Moffat et al., 2007; Richardson et al., 2008) 

4. Recently, Mauder et al. (2013) introduced to EC data processing an operational, 

independent quantification of the instrumental noise and of the stochastic error by 

calculating the auto- and cross-covariances of the measured fluxes. This method was 

adapted from Finkelstein and Sims (2001). In contrast to the previous approaches this 

method uses the high-frequency raw-data. The advantage of this approach is that it is 

independent of measurements by a second tower or measurement from the next day. 

Moreover, the raw-data based uncertainty estimate is not affected by not fulfilled underlying 

assumptions such as a correct simulation model or similar environmental conditions. 

Because many data users do not have access to the raw-data but to processed data only, the 

applicability of the raw-data based approach is restricted to those responsible for the initial 

data processing. 

2.2. THE COMMUNITY LAND MODEL (CLM) AND ITS 

REPRESENTATION OF THE LAND CARBON CYCLE  

Figure 2.2 illustrates the main processes of the 

coupled carbon, energy and water cycles 

represented by the Community Land Model 

(CLM) and other land surface models. The 

simulated land surface fluxes (carbon, latent heat, 

sensible heat) are driven by the meteorological 

input data and are determined by the land surface 

conditions (e.g., land cover distribution, soil 

texture) as well as model states (e.g., carbon and 

nitrogen pools, soil moisture). The initial states are 
Figure 2.2: Land biogeophysical and biogeochemical 

processes simulated with CLM. 
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generated by a model spin-up. In this study, the Community Land Model version 4.5 (CLM4.5) 

was used in the dynamic carbon-nitrogen mode (BGC). CLM4.5BGC comprises a 

biogeochemical model that is based on the terrestrial biogeochemistry model Biome-BGC 

(Thornton et al., 2002; Thornton and Rosenbloom, 2005; Thornton et al., 2009) and is 

characterized by a fully prognostic carbon and nitrogen dynamic (Oleson et al., 2013).  

The net exchange of CO2 between the land surface and the atmosphere (NEE) is the sum of 

gross primary production (GPP), i.e. the photosynthetic CO2 uptake, and ecosystem respiration 

(ER) through which CO2 is released from ecosystems into the atmosphere. In CLM, 

photosynthesis is calculated at the leaf scale separately for sunlit and shaded canopy fractions 

(Dai et al., 2004; Thornton and Zimmermann, 2007) and is upscaled via the leaf area index. The 

leaf stomatal resistance is calculated based on the Ball-Berry conductance model (Ball and 

Berry, 1982; Collatz et al., 1991), which was implemented by Sellers et al. (1996) for global 

climate model applications. Photosynthesis in C3 and C4 plants is calculated based on the 

models by Farquhar et al. (1980) and Collatz et al. (1992) respectively, which were 

implemented by Bonan et al. (2011) in CLM. As outlined in Oleson et al. (2013), leaf net 

photosynthesis (An) is 

, (2.3) 

 with R 2 m-2 s-1], Ac= RuBP carboxylase (Rubisco) limited rate of 

2 m-2 s-1], Aj 2 m-2 s-1], and 

Ap = the product-limited carboxylation rate (C3 plants) and the PEP (phosphoenolpyruvate) 

carboxylase-limited rate of carboxylation (C4-plants). Ac, Aj, Ap are all a function of the internal 

leaf CO2 partial pressure (Pa). Ap is also a function of the the Michaelis-Menten constants (Pa) 

for CO2 and oxygen (O2). Ap and Ac are both determined by the maximum rate of carboxylation 

Vcmax [ mol m-2 s-1]. Vcmax is dependent on the maximum rate of carboxylation at 25°C (Vcmax25): 

(2.4) 

where flNR fraction of leaf N in Rubisco enzyme

  = specific 

activity of Rubisco [ mol CO2 g-1 Rubisco s-1],  = leaf carbon-to-nitrogen ratio [gC g-1N] 

and slatop specific leaf area at the canopy top [m2 g-1 C]). Vcmax25 is modified with a function of 

variations in daylength, which introduces seasonal variations to Vcmax. For further details see 

Oleson et al. (2013). 
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The total ecosystem respiration (ER) in CLM includes both heterotrophic respiration (HR) and 

autotrophic respiration, the sum of maintenance respiration (MR) and growth respiration (GR). 

MR and GR are treated separately in CLM. As outlined in Oleson et al. (2013) maintenance 

respiration is defined as the carbon cost to support the metabolic activity of existing live tissue, 

while growth respiration is defined as the additional carbon cost for the synthesis of new 

CLM distinguishes between living vegetation pools (roots, stem, and leaves) and dead 

carbon-nitrogen (CN) pools (litter, coarse wood debris, soil organic matter). The maintenance 

respiration (MR) is the sum of MR separately calculated for leaves (MRleaf), fine roots (MRfroot), 

live stem (MRlivestem) and live coarse roots (MRlivecroot). The individual MR contribution for 

leaves is calculated as follows:  

  (2.5) 

where NSleaf [gN m-2] is leaf nitrogen content, mrb [gC gN-1 s-1] is the base rate of maintenance 

respiration per unit nitrogen content, Q10 is the temperature sensitivity for maintenance 

respiration and  [°C] is the air temperature at 2m height. The contributions MRlivestem and 

MRlivecroot are accordingly calculated (with NSlivestem and NSlivecroot instead of NSleaf). MRfroot is 

the sum of MRfroot separately calculated for different soil layers j using the soil temperature at 

level j instead of  and including the fraction of fine roots present at soil level j. Growth 

respiration is calculated individually for each allocation pathway based on the growth 

respiration factor (gR), which is multiplied with the carbon allocated to each individual living 

vegetation pool at a given time step (Oleson et al., 2013).  

Decomposition of fresh litter material, the gradual transition of labile dead organic matter into 

more recalcitrant forms, is represented as the carbon transfer from one pool to another: 

 (2.6) 

where Ci is the carbon content of pool i, CPi are the direct carbon inputs from plant tissues to i 

(only non-zero for coarse woody debris and litter pools), ki is the decay constant of pool i, Tji is 

the fraction of carbon directed from pool j to pool i, and rj is the carbon fraction lost as the 

respiration flux (HR). 

CLM4.5 contains both the old CLM4 decomposition structure based on CLM-CN (Thornton et 

al., 2002; Thornton and Rosenbloom, 2005) and the BGC structure, which is based on the 

CENTURY model (Parton et al., 1988, 1993) and contains a different pool structure and slower 

decomposition rates. In a 10 year multi-site field experiment executed for 27 sites across North 

and Central America (Bonan et al., 2013), the parameterization of the litter and soil organic 
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matter pools in CLM-CN, originally based on laboratory incubation experiments (Thornton and 

Rosenbloom, 2005), was found to differ strongly from real conditions. In particular the litter 

decomposition was found to be too high in CLM-CN, which caused a too rapid CN cycle and 

an underestimation of the remaining carbon mass. Thus, the BGC decomposition module is now 

standard in CLM4.5 and was also used in this study. CLM4.5 also includes a new vertically 

resolved soil biogeochemistry scheme and decomposition structure (Koven et al., 2013). In this 

scheme, decomposition decreases exponentially with soil depth (Jenkinson and Coleman, 

2008). The decomposition base rates are modified by environmental variables including soil 

temperature and soil moisture. The temperature scalar is calculated based on the temperature 

coefficient Q10 for each soil layer. The influence of the soil water potential is calculated 

separately for each soil layer based on Andrén and Paustian (1987). They formulated a 

relationship that includes the soil water potential in layer j, the lower limit for soil water control 

on the deposition rate (set to -10 MPa), and the saturated soil water potential [MPa]. The latter 

is calculated with a multivariate regression model by Cosby et al. (1984), which is a function 

of the volume percentages of sand and clay content in each individual soil layer. In case of the 

vertically resolved model (Koven et al., 2013), which was applied here, two additional 

environmental modifiers are calculated: the depth scalar, and an oxygen scalar, which is enabled 

with the CH4 submodel and limits decomposition if the oxygen supply is insufficient. In 

addition, heterotrophic respiration can be limited by the available mineral nitrogen (N) in soil. 

CLM resolves the competition between plant and microbial nitrogen demand. Accordingly, all 

carbon fluxes depend on the soil nitrogen content, which is altered by atmospheric N deposition, 

biological nitrogen fixation, nitrification, denitrification and leaching (as well as losses in fire, 

but the fire module was switched off in this application as fires are very rare in the Rur 

catchment).  

As outlined in Oleson et al. (2013), CLM4.5BGC is fully prognostic with respect to the seasonal 

timing of vegetation growth and litterfall. The day length, the soil and air temperature as well 

as the soil water content are the main determinants of plant phenology. Plant phenology 

representation follows three different schemes depending on the particular plant functional type 

(PFT): 1. Evergreen phenology, 2. Seasonal deciduous phenology, and 3. Stress deciduous 

phenology. The four most widespread CLM-PFTs in the Rur catchment are: (1) temperate 

evergreen needleleaf trees, (2) temperate broadleaf deciduous trees, (3) C3 non-arctic grass, and 

(4) C3-crop. Evergreen coniferous trees follow phenology scheme 1, deciduous broadleaf trees 

follow scheme 2, and both C3-grass and C3-crop follow scheme 3. The LAI and all carbon and 
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nitrogen state variables in the vegetation, litter, and soil organic matter are calculated 

prognostically.  

The definition of land use cover in CLM follows a nested sub-grid hierarchy structure (Oleson 

et al., 2013). The main land units (defined as percentage coverage per grid cell) are: glacier, 

wetland, vegetated land, lake and urban area. Each land unit follows a different sub model 

scheme to calculate the respective carbon, water and energy fluxes for a certain grid cell. Each 

vegetated land unit has 15 soil columns and can include different plant functional types. The 

PFTs are also defined as percentage area of the vegetated area within the grid cell. 

2.3. PARAMETER ESTIMATION WITH DREAM 

DREAM is an adaptive Markov Chain Monte Carlo (MCMC) method for statistical inference 

of the posterior probability density function (pdf) of the model parameters (Vrugt et al., 2008, 

2009; Vrugt, 2016). The concept of Markov Chain Monte Carlo simulations is to approximate 

the posterior probability distribution of parameters (and states) according Bayes theorem 

without restricting assumptions on the shape of the probability density function of parameters 

and states. The Bayes Theorem is given by: 

 (2.7) 

where x are the model parameters to be estimated, = { } is a n-vector of measured 

data,  signifies the posterior probability density function (pdf), is the 

likelihood function,  the prior distribution and the normalizing constant. In practice, 

 needs not be computed, and all statistical inferences about  can be made from its 

unnormalized density, .  

It is assumed herein that the prior distribution is uniform (non-informative) using ranges of the 

predefined upper and lower bounds for each parameter. The likelihood function quantifies in 

probabilistic terms the level of agreement between the simulated n-vector,  and the 

corresponding observed data, . Under the assumption of uncorrelated and normally distributed 

error residuals, , the likelihood function can be written as 

follows: 
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  (2.8) 

where  = { 1 n} is a n-vector with standard deviations of the measurement error of the 

observations. If homoscedasticity of the measurement errors is anticipated, then the likelihood 

function of Equation 2.8 can be simplified to 

  (2.9) 

using 

  (2.10) 

as sufficient statistic of the measurement error variance . This sum of squared error type 

likelihood function is used herein for posterior inference. For reasons of numerical stability, the 

log-formulation, of Equation 2.9 is used herein:  

  (2.11) 

Now the prior distribution and likelihood function have been defined, what is left is to 

summarize the posterior distribution,  of the model parameters. For complex, nonlinear 

models like CLM, this posterior distribution of parameters cannot be obtained by analytical 

means or by analytical approximation. Thus, an iterative method is required that approximate 

the posterior pdf, which in case of DREAM is Markov chain Monte Carlo (MCMC) simulation 

(Metropolis et al., 1953). The basis of MCMC simulation is a Markov chain that generates a 

random walk through the search space and successively visits solutions with stable frequencies 

stemming from a stationary distribution.  

The DREAM multi-chain MCMC simulation algorithm automatically tunes the scale and 

orientation of the proposal distribution in route to the target distribution, and exhibits excellent 

sampling efficiencies on complex, high-dimensional, and multi-modal target distributions. The 

use of multiple chains offers a robust protection against premature convergence, and opens up 

the use of a wide arsenal of statistical measures to test whether convergence to a limiting 

distribution has been achieved. 

In short, in DREAM N different Markov chains are run simultaneously in parallel. If the state 

of a single chain is given by the d-vector x, then at each generation t - 1 the N chains define a 
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population,  =  which corresponds to a N  d matrix, with each chain as 

row. If A is a subset of d*-dimensions of the original parameter space,  then a jump 

( ) in the ith chain,  at iteration  is calculated from  using  

 

 

(2.12) 

 

, 

where  denotes the jump rate,  is the number of chain pairs used to generate 

the jump, and a and b are vectors consisting of  integers drawn without replacement from 

. The values of  and  are sampled independently from a multivariate 

uniform distribution  and normal distribution respectively, and, with 

typically c = 0.1 and  small compared to the width of the target distribution (e.g. =10-6). To 

enable direct jumps between disconnected posterior nodes, the value of  is set to unity with a 

20% probability, otherwise the default value of  is used. The d*-members of the subset A are 

sampled from the entries  (without replacement) and define the dimensions of the 

parameter space to be sampled by the proposal.  

The proposal point of chain i at iteration t then becomes: 

 (2.13) 

and the Metropolis acceptance ratio  is used to determine whether to accept this proposal or 

not:  

. (2.14) 

If the candidate point is accepted, then the ith chain moves to the new position, that is 

, otherwise =  (Vrugt, 2016). After a burn-in period, the Markov chains have become 

independent of their initial value and convergence is defined and monitored with the univariate 

-convergence diagnostic of Gelman and Rubin (1992). The -statistic of Gelman is computed 

for each dimension as the ratio of variance within one chain and the variance between different 

chains. Because every point in the parameter space is hit with a frequency proportional to its 

probability, the random walk allows to iteratively find a stable target distribution. Hence, after 

convergence, the density of the acceptance points in the parameter space approximates the 

posterior pdf according to Bayes theorem. 
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Herein, a simple adaptation of DREAM is used, called the DREAM(zs) algorithm which creates 

the jumps in Equation 2.12  

current states only (Vrugt, 2016). This reduces the required number of Markov chains to just a 

few. Moreover, DREAM(zs) (Ter Braak and Vrugt, 2008) to 

increase diversity of the sampled proposals. It is assumed that convergence of the DREAM(zs) 

algorithm to a limiting distribution has been achieved if the statistic is smaller than the 

threshold value of 1.2 for all d model parameters. The least-squares parameter values (also 

referred to as maximum a posteriori [MAP] solution) are found by locating the sample of the 

posterior distribution with highest posterior density  

.  (2.15) 

A full description of the DREAM and DREAM(zs) algorithms can be found in Ter Braak and 

Vrugt (2008), Vrugt et al., (2008, 2009) and (Vrugt, 2016). This chapter was adapted from Post 

et al. (2016). 
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net carbon flux measurements for different 

EC tower distances 

*adapted from: Post, H., Hendricks Franssen, H.J., Graf, A., Schmidt, M., Vereecken, H., 2015. Uncertainty 
analysis of eddy covariance CO 2 flux measurements for different EC tower distances using an extended 
two-tower approach. Biogeosciences 12, 1205 1221. 

 

3.1. INTRODUCTION 

The net ecosystem exchange of CO2 between the land surface and the atmosphere (NEE) can 

be determined with the eddy covariance (EC) method. Eddy covariance CO2 flux measurements 

are commonly used to analyze the interactions between terrestrial ecosystems and the 

atmosphere, which is important for the understanding of climate-ecosystem feedbacks. In this 

regard reliable EC data with appropriate uncertainty estimates are crucial for many application 

fields, such as the evaluation and improvement of land surface models (e.g. Braswell et al., 

2005; Hill et al., 2012; Kuppel et al., 2012).  

Dragoni 

et al. (2007). It differs from the systematic error in that it is unpredictable and impossible to 

correct (but can be quantified). Uncerta accumulate linearly 

can be characterized by probability distribution functions ( Richardson et al., 2012). Systematic 

errors are considered to remain constant for a longer time period (> several hours). Ideally they 

can be corrected, but in case of EC measurements this is still limited by either our understanding 

of various error sources or insufficient background data. Systematic errors arise not only from 

instrumental calibration and data processing deficits, but also from unmet underlying 

assumptions about the meteorological conditions (Richardson et al., 2012). A main assumption 

is that turbulence is always well developed in the lowest atmospheric boundary layer and 

responsible for the mass transport while horizontal divergence of flow and advection are 

assumed to be negligible (Baldocchi, 2001). Moreover, the EC method is based on the mass 

conservation principle, which requires the assumption of steady state conditions of the 

meteorological variables (Baldocchi, 2003). In case of CO2 fluxes, night-time respiration is 
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often underestimated due to low wind velocities conditions and a temperature inversion which 

hinders the upward carbon dioxide transport (Baldocchi, 2001). Hence, night-time data are 

commonly rejected for further analysis (Barr et al., 2006).  

After a possible correction of the EC flux data for systematic errors a random error will remain, 

which can arise from different sources such as (a) the assumption of a constant footprint area 

within a measurement interval and the negligence of flux footprint heterogeneity (e.g. due to 

temporal variability of wind direction, wind speed and atmospheric stability, which cause 

temporal variations of the footprint area); (b) turbulence sampling errors which are related to 

the fact that turbulence is a highly stochastic process and especially the sampling or not 

sampling of larger eddies is associated with considerable random fluctuations of fluxes, even if 

they are already averaged over a 30-minutes period; and (c) instrumentation deficits that can 

e.g. cause random errors in the measured variables (such as the CO2 mixing ratio and the vertical 

wind velocity) used to calculate the net CO2 flux (Flanagan and Johnson, 2005; Aubinet et al., 

2011, p.179).  

Within the past decade, several approaches have been proposed to quantify the uncertainty of 

eddy covariance CO2 flux measurements. With the -

simultaneous flux measurements of two EC towers are analyzed (Hollinger et al., 2004; 

Hollinger and Richardson, 2005). For the uncertainty quantification with the two-tower 

approach, it is necessary that environmental conditions for both towers are nearly identical 

(Hollinger et al., 2004; Hollinger and Richardson, 2005). However, most eddy covariance sites 

do not have a nearby second EC tower to provide nearly identical environmental conditions. 

Therefore, Richardson et al. (2006) introduced the -tower  - , 

which is based on the two-tower approach. The main difference is that the uncertainty estimate 

is based on differences between fluxes measured on subsequent days if environmental 

conditions were similar on both days. Because most often environmental conditions are not the 

same on two subsequent days (Liu et al., 2006), the applicability of this method suffers from a 

lack of data and the random error is overestimated (Dragoni et al., 2007). The model residual 

approach (Hollinger and Richardson, 2005; Dragoni et al., 2007; Richardson et al., 2008) 

calculates CO2 fluxes with a simple model and compares calculated values with measured 

values. The model residual is attributed to the random measurement error. The method is based 

on the assumption that the model error is negligible, which is however a very questionable 

assumption. Alternatively, if the high-frequency raw-data of an EC tower are available, 

uncertainty can be estimated directly from their statistical properties (Billesbach, 2011). 

Finkelstein and Sims (2001) introduced an operational quantification of the instrumental noise 
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and the stochastic error by calculating the auto- and cross-covariances of the measured fluxes. 

This method was implemented into a standard EC data processing scheme by Mauder et al. 

(2013). The advantage is that a second tower or the utilization of additional tools such as a 

simple model to estimate the EC measurement uncertainty is no longer required. However, 

many data users do not have access to the raw-data but to processed EC data only. Moreover, a 

large amount of solid metadata about the set-up of the EC measurement devices is required (but 

often not provided at second hand) to obtain reliable raw-data based uncertainty estimates 

adequately. Therefore, a two-tower based approach has still a large group of users. In particular 

with regard to pairs of nearby towers from local clusters, which play an increasing role in the 

monitoring strategies of e.g. ICOS and NEON, and have already been employed in case studies 

(e.g. Ammann et al., 2007). Important advantages of the two-tower approach are (1) its 

simplicity and user friendliness, (2) its usability for relatively short non gap-filled time series 

of several months, and (3) the independence of a model.  

The classical two-tower approach (Hollinger et al., 2004; Hollinger and Richardson, 2005; 

Richardson et al., 2006) is based on the assumption that environmental conditions for both EC 

towers are identical and flux footprints should not overlap to guarantee statistical independence. 

Hollinger and Richardson (2005) use threshold values for three variables (photosynthetically 

active photon flux density PPFD, temperature & wind speed) to determine whether 

environmental conditions are equivalent. Independent of this definition, our understanding of 

s and land surface properties such 

as soil properties (texture, density, moisture, etc.), plant characteristics (types, height, density, 

rooting depth, etc.), nutrient availability and fauna (microorganisms, etc.), which are irregularly 

distributed and affect respiration and/or photosynthesis. Strictly speaking, if footprints do not 

overlap 100%, the assumption of identical environmental conditions is already not fulfilled. 

When applying a two-tower based approach it is important to assure that systematic differences 

of the measured fluxes, which are partly caused by within site or among site heterogeneity, are 

not attributed to the random error estimate of the measured NEE. Our assumption that even 

within a site with apparently one uniformly distributed vegetation type (and for very short EC 

tower distances) land surface heterogeneity can cause significant spatial and temporal 

variability in measured NEE is e.g. supported by Oren et al. (2006). They found that the spatial 

variability of ecosystem activity (plants and decomposers) and LAI within a uniform pine 

plantation contributes to about half of the uncertainty in annual eddy covariance NEE 

measurements while the other half is attributed to micrometeorological and statistical sampling 
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errors. This elucidates the relevance of considering systematic flux differences caused by within 

site ecosystem heterogeneity when calculating a two-tower based uncertainty estimate. 

Given the fact that site-specific, adequate uncertainty estimates for eddy covariance data are 

very important but still often neglected due to a lack of resources, the objective of this study is 

to advance the two-tower approach so that it can also be applied if environmental conditions at 

both eddy covariance towers are not very similar. 

The main objectives of this study were (1) to analyze the effect of the EC tower distance on the 

two-tower based CO2 flux measurement uncertainty estimate and (2) to extend the two-tower 

approach with a simple correction term that removes systematic differences in CO2 fluxes 

measured at the two sites. This extension follows the idea of the extended two-tower approach 

for the uncertainty estimation of energy fluxes presented in Kessomkiat et al. (2013). The 

correction step is important for providing a more reliable random error estimate. In 

correspondence with these objectives, the following questions were analyzed: What is an 

appropriate EC tower distance to get a reliable two-tower based uncertainty estimate? Can the 

random error be quantified in reasonable manner with the extended two-tower approach, even 

though environmental conditions at both EC towers are clearly not identical? The total random 

error estimated with the raw-data based method (Mauder et al., 2013) was used as a reference 

to evaluate our extended two-tower approach based results.  

3.2. TEST SITES AND EC TOWER SET-UP 

The Rollesbroich test site is an extensively used grassland site, located in the Eifel region of 

western Germany (Figure 3.1). The mean temperature in Rollesbroich is ~ 7.7°C and the mean 

precipitation is ~ 1033mm per year (Korres et al., 2010). Predominating soil types at the site 

are Cambisols with a high clay and silt content (Arbeitsgruppe BK50, 2001). The grass species 

grown in Rollesbroich are mainly ryegrass, particularly perennial ryegrass (lolium perenne), 

and smooth meadow grass (poa pratensis) (Korres et al., 2010). A permanent eddy covariance 

tower (EC1) is installed at the Rollesbroich site since May 2011 at a fixed position. The 

measurement height of the sonic anemometer (CSAT3, Campbell Scientific, Logan, UT, 

U.S.A.) and the open-path gas analyzer (Li7500, Li-Cor, Lincoln, NE, U.S.A.) is 2.6 m above 

ground. The canopy height was measured every 1-2 weeks and varied between 0.03 m and 0.88 

m during the measurement period. A second EC tower, the roving station (EC2), has been 
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installed at four different distances (8 m, 95 m, 173 m and 20.5 km) from EC1 for time periods 

ranging between 3 and 7.5 months (Table 3.1 all- -

east of Rollesbroich is another grassland site with similar environmental conditions as 

Rollesbroich. The vegetation in Kall-Sistig is extensively managed C3-grass, the same as for 

Rollesbroich. However, the average plant height measured between Aug. 14th and Oct. 30th 

2012 was lower (~ 0.15 m) than the respective average for Rollesbroich (~ 0.2 m), which is also 

true for the plant height measured in May and June 2012 (Kall-Sistig: ~ 0.22 m; Rollesbroich: 

~ 0.29 m). As in Rollesbroich, clayey-silty Cambisols are most widespread (Arbeitsgruppe 

BK50, 2001). The mean temperature for the entire measurement interval in Kall-Sistig (Table 

3.1) measured at the EC station is 11.4 °C and the soil moisture 32% compared to 11.0 °C and 

35% in Rollesbroich (same time interval for averaging). Additionally a third EC tower was 

located in Merzenhausen in ~ 34 km distance to EC1 (Figure 3.1). Merzenhausen (ME) is an 

agricultural site, where winter wheat was grown during the measurement period. Both the land 

use conditions and the average weather conditions differ from those in Rollesbroich and Kall-

Sistig. The climate at the lowland site Merzenhausen is comparable to the one in Selhausen at 

a distance of 13 km from Merzenhausen, where the mean precipitation is ~ 690 mm/a and the 

yearly mean temperature ~9.8°C (Korres et al., 2010). The soils are mainly Luvisols with some 

patches of Kolluvisols (Arbeitsgruppe BK50, 2001). The measurement devices of EC2 and EC3 

are the same as the EC1 devices and were installed 2.6 m above ground as well. Both, the sonic 

anemometers and the open-path gas analyzers were calibrated every 1-3 months thoroughly and 

consistently. Details on the EC data acquisition are summarized in Chapter 3.3.1. 

Rollesbroich is part of the TERENO network (Zacharias et al., 2011). Information and 

additional data were collected showing that land surface properties are spatially heterogeneous 

distributed at the Rollesbroich site: (1) Single fields at the Rollesbroich site are managed by 

different farmers. Information the land owners provided, as well as periodic camera shots and 

grass height measurements around the EC towers indicated that the timing of fertilization and 

grass cutting as well as the amount of manure applied varied between the single fields during 

the measurement period; (2) Soil type distribution as displayed in the German soil map shows 

heterogeneity (Arbeitsgruppe BK50, 2001); (3) Soil carbon and nitrogen pools [g/kg] as well 

as bulk density [g/cm3] and content of rock fragments [%] measured from April-May 2011 in 

three soils horizons at 94 locations across the Rollesbroich site are spatially highly variable (H. 

Schiedung 2013, personal communication); (4) During the eddy covariance measurement 

period, soil moisture and soil temperature data were collected in 10 min. resolution at three 
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Bogena et al., 2009), calibrated for the Rollesbroich site by Qu et al., (2013). SoilNet data shows 

that soil moisture is heterogeneously distributed within the Rollesbroich site (Qu et al., 2014). 

Table 3.1: Measurement periods and locations of the permanent EC towers in Rollesbroich (EC1) and 

Merzenhausen (EC3) and the roving station (EC2). 

 Coordinates Sitename 
Distance 

to EC1 
Measurement period 

alt. 

(m) 

EC1 Rollesbroich  13.05.2011  15.07.2013 514.7 

EC2 

50.6219012°N / 6.3040107°E 

50.6219012°N / 6.3040107°E 
Rollesbroich 8m 

29.07.2011  06.10.2011 

05.03.2013  15.05.2013 
514.8 

50.6217990°N / 6.3027962°E 

50.6210472°N / 6.3042120°E 
Rollesbroich 95m 

07.10.2011  15.05.2012 

01.07.2013  15.07.2013 

516.3 

517.3 

50.6217290°N / 6.3016925°E Rollesbroich 173m 24.05.2012  14.08.2012 

 

517.1 

 

50.5027500°N / 6.5254170°E Kall-Sistig 20.5 km 
14.08.2012  01.11.2012 

15.05.2013  01.07.2013 
498.0 

EC3 50.9297879°N / 6.2969924°E Merzenhausen 34 km 10.05.2011  16.07.2013  93.3 

 

 

 

Figure 3.1: Eddy covariance (EC) tower locations in the Rur-Catchment (center) including the Rollesbroich 

test site (left). 
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3.3. DATA AND METHODS 

3.3.1. EC data processing  

The EC raw data were measured with a frequency of 20 Hz and fluxes were processed for flux 

intervals of 30 minutes. The complete processing of the data was performed with the TK3.1 

software (Bayreuth, Department of Micrometeorology, Germany; Mauder and Foken, 2011), 

using the standardized strategy for EC data calculation and quality assurance presented in detail 

by Mauder et al., 2013. The strategy includes established EC conversions and corrections such 

as e.g. correction of spectral loss (Moore, 1986) and correction for density fluctuations (Webb 

et al., 1980). It includes tests on high frequency data (site-specific plausibility limits, statistical 

spike detection) as well as on processed half-hourly fluxes such as stationarity and integral 

turbulence tests (Foken and Wichura, 1996). The tests on half-hourly fluxes are the basis for a 

standardized quality flagging according to Mauder and Foken (2011) that classifies flux 

measurements as high (0), moderate (1) or low (2) quality data. For this analysis only flux 

measurements assigned to 0 or 1 were used, while low quality data were treated as missing 

values. Besides quality flags, TK3.1 also provides footprint estimates (Kormann and Meixner, 

2001) and uncertainty estimates that were used for interpreting and analyzing flux data. To 

avoid introduction of additional uncertainty no gap filling of flux time series was performed.  

3.3.2. Uncertainty estimation based on the two-tower approach 

The two-tower approach (Hollinger et al., 2004; Hollinger and Richardson, 2005; Richardson 

et al., 2006) defines the random error of NEE eddy covariance measurements as the standard 

deviation  of the difference between the CO2 -2s-1] simultaneously measured 

at two different EC towers ( ): 

 
(3.1) 

 

Based on Equation 3.1 the two-tower based uncertainty estimates were calculated using the 

 data measured at the permanent EC tower in Rollesbroich (EC1) and the  data of a 

second tower, which was either the roving station (EC2) or  in case of the 34 km EC tower 

distance  another permanent EC tower (EC3, Table 3.1).  

For comparison, the measurement uncertainty  was calculated separately for each EC 

tower distance (Table 3.1) and independently for each of the following schemes:  
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1. The classical two-tower approach (Hollinger et al., 2004; Hollinger and Richardson, 

2005; Richardson et al., 2006). 

2. The classical two-tower approach including a filter for similar weather conditions 

(Chapter 3.3.4). 

3. The extended two-tower approach with an added correction for systematic flux 

differences (sfd-correction; Chapter 3.3.3), without weather-filter.  

4. The extended two-tower approach with sfd-correction and the previously applied 

weather-filter. 

The uncertainty estimate of the two-tower approach is obtained by dividing the NEE data series 

into s Equation 3.1 to 

calculate the standard deviation  for each group (Richardson et al., 2006). Finally, a linear 

regression function between the flux magnitude and the standard deviation can be derived. The 

linear correlation of the uncertainty and the flux magnitude can be explained by the fact that the 

flux magnitude is a main driving factor for the random error and can explain about 63% of the 

variance in the CO2 flux error as shown in a case study by Richardson et al. (2006). Accordingly, 

the standard deviation  [ mol m-2 s-1] was calculated based on 12 groups of the CO2 flux 

magnitude; six groups for positive and six groups for negative fluxes. (NEE is positive if the 

amount of CO2 released to the atmosphere via respiration is higher than the amount of CO2 

assimilated during photosynthesis. In contrast, negative NEE values denote a higher CO2 uptake 

and a net flux from the atmosphere into the ecosystem.) Fixed class limits for the flux magnitude 

would have led to a different number of samples in each group. Now class limits were set such 

that all groups with positive NEE values had an equal amount of half-hourly data, the same 

holds for all groups with negative NEE values. For each single group the standard deviation 

 was calculated using the single half-hourly flux differences of NEE1 and NEE2. The 

corresponding mean NEE magnitude for each group member was determined by averaging all 

half-hourly means of NEE1 and NEE2 in the respective group. Then, the linear regression 

equation was derived separately for negative and positive NEE values using the 6 calculated 

standard deviations  and the 6 mean NEE values. This procedure was carried out for each 

dataset of the five EC tower distances and again for each of the four uncertainty estimation 

schemes so that altogether 20x2 linear regression equations were derived. The significance of 

the correlation between the NEE magnitudes and the standard deviations  was tested with 
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the p- value determined with the Studen -test based on Pearson's product moment correlation 

coefficient r. Moreover, the 95% confidence intervals of the slope and the intercept for each 

liner regression equation were determined. The linear regression equations were calculated 

imposing as constraint an intercept >= 0, because a negative standard deviation is not possible. 

With those linear regression equations, the uncertainty for the individual half-hourly NEE 

measurement values of the permanent EC tower in Rollesbroich (EC1) were estimated using 

the individual half-hourly NEE1 values [ mol m-2 s-1] as input (x) to calculate the corresponding 

uncertainty  [ mol m-2 s-1] (y).  

The described calculation of the individual NEE uncertainty values was done for all half-hourly 

NEE data, including those data points that were discarded by the weather filter (Chapter 3.3.4) 

and/or the sfd-correction (Chapter 3.3.3). Hence, for each of the four two-tower based 

uncertainty estimation schemes the same amount of individual NEE uncertainty values was 

generated. These mean uncertainty estimates were used to evaluate the effect of the EC tower 

distance as well as the sfd-correction and the weather-filter on the two-tower based uncertainty 

estimation. Even though Hollinger et al. (2004) and Richardson and Hollinger (2005) already 

pointed out that the two-tower approach assumes similar environmental conditions and non-

overlapping footprints, the classical approach was applied for all EC tower distances, even if 

these basic assumptions were not fulfilled, to allow for a comparison of the results before and 

after the usage of the weather-filter and the sfd-correction (extended two-tower approach). 

3.3.3. Correction for systematic flux differences (sfd-correction) 

Different environmental conditions and other factors such as instrumental calibration errors can 

cause systematic flux differences between two towers. Because these flux differences are not 

inherent to the actual random error of the measured NEE at one EC tower station they lead to 

an overestimation of the two-tower approach based uncertainty. Therefore, an extension of the 

classical two-tower approach is proposed here which includes a simple correction step for 

systematic flux differences (sfd-correction). The reason why systematic flux differences can 

statistically be separated quite easily from random differences of the EC flux measurements is 

their fundamentally different behavior in time: random differences fluctuate highly in time 

whereas systematic differences tend to be constant over time or vary slowly. The sfd-correction 

introduced is similar to the second correction step in Kessomkiat et al. (2013, Equation 6 

therein), but adapted to the measured NEE instead of latent and sensible heat fluxes. An 

averaging time interval of 12 hours was used to calculate the running mean for the sfd-

correction. For each moving average interval, the mean NEE12h of one EC tower (separately for 
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-2 s-1] and the mean CO2 flux averaged over both EC towers NEE2T_12h 

-2 s-1] were calculated to define the sfd-correction term which was used to calculate the 

corrected NEEcorr 
-2 s-1]:  

 (3.2) 

NEE is the single half-hourly, processed NEE -2 s-1] of one EC tower. Only if 

both NEE data, NEE-EC1- for the permanent EC1 tower and NEE-EC2- for the second tower, were 

available at a particular half-hourly time step and if both values were either positive or negative, 

the respective data were included to calculate the correction term. The running averages were 

only calculated if at least 50% of the data for NEE-EC1- and NEE-EC2 remained for averaging in 

that particular window. Due to the frequent occurrence of gaps in the data series the amount of 

available NEEcorr values considerably decreased by applying stricter criteria like 70% data 

availability (Table 3.2). We assume a 12 hour averaging period to be long enough to exclude 

most of the random error part but short enough to consider daily changes of systematic flux 

differences. For a six hour interval for instance the uncertainty of the mean NEE is usually 

higher. For larger window sizes (24 or 48 hours) further analysis was hampered by too many 

data gaps, i.e. the 50% criterion was hardly ever fulfilled and not enough averages remained to 

allow for the two-tower based uncertainty estimation (Table 3.2). The correction was done 

separately for positive and negative fluxes, due to the different sources, properties and 

magnitudes of the CO2 flux measurements and different errors for daytime (negative) and night-

time (positive) fluxes (e.g. Goulden et al., 1996; Oren et al., 2006; Wilson et al., 2002).  

Table 3.2: R2 for NEE uncertainty determined with the extended two-tower approach (including sfd-
correction and weather-filter) as function of NEEcorr magnitude and for 20.5 km EC tower 
distance. Results are given for different moving average time intervals (6 hr, 12 hr, 24hr) and 
data coverage percentages (25%, 50%, 70%) for the calculation of the sfd-correction factor 
(Equation 3.2). 

black: for negative NEE; grey: for positive NEE; ( ): total number of half-hourly NEE left after sfd-correction and 
weather filter to build bins for NEE uncertainty versus NEE magnitude regressions 

 

The final sfd-corrected NEE1corr values for EC1 and NEE2corr values for EC2 should not be 

understood as corrected NEE flux data. They were used only to enhance the two-tower based 

uncertainty estimation in a way that systematic flux differences, which cause an overestimation 
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of the uncertainty, are filtered out. Moreover, systematic flux differences at two EC towers are 

not to be confused with systematic errors, which are independent of the uncertainty estimation 

method and optimally corrected before the random error is estimated. 

3.3.4. Filter for weather conditions 

For larger distances of two EC towers, such as the 20.5 km and 34 km distance in this study, 

different weather conditions can cause differences of the measured fluxes in addition to the 

different land surface properties. Some weather variables (e.g. temperature) are following a 

clear diurnal and annual course and differences in e.g. temperature at two EC towers are 

therefore relatively constant. This is expected to cause rather systematic differences in the 

measured NEE, which can be captured with the sfd-correction. However, other variables such 

as wind speed or incoming short wave radiation are spatially and temporally much more 

variable, for example related to single wind gusts or cloud movement. Differences in the 

measured fluxes at two EC towers caused by those spatial-temporally highly variable weather 

variables cannot be captured well with the sfd-correction term . 

However, a weather filter can account for this because it compares the differences in weather 

variables at each single time step. Therefore, a filter for similar weather conditions was applied 

in addition to the sfd-correction following Hill et al. (2012) and Richardson et al. (2006) to only 

include half-hourly NEE data, if the weather conditions at the second EC tower are similar to 

those at the permanent EC1 tower location in Rollesbroich. Following the definition in 

Richardson et al. (2006), similar weather conditions were defined by a temperature difference 

< 3°C; wind speed difference < 1 m/s and difference in PPFD -2 s-1. The weather-

filter was applied before the (classical) uncertainty estimation and the sfd-correction. As shown 

e.g. in Tsubo and Walker (2005), the incoming short wave radiation (or solar irradiance SI) and 

the photosynthetically active radiation (PAR) are linearly correlated. Accordingly, SI and PPFD 

measured at the EC1 station in Rollesbroich were linearly correlated as well. Because direct 

PPFD measurements were not available for all measurement periods, a linear regression 

equation was derived on the basis of all SI and PPFD data for the permanent EC tower station 

(EC1). Using this equation, missing PPFD values were estimated if only SI but no PPFD data 

were available at a certain time step. 

3.3.5. Footprint analysis 

The footprint analysis was applied to quantify the percentage footprint overlap of the two EC-

stations during the measurement periods. This information was not used to filter the data but to 

allow for a better understanding of the mean uncertainty estimates for the different scenarios. 
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Using the analytical model of Kormann and Meixner (2001) implemented in the TK3.1 software 

(Mauder and Foken, 2011), a grid of estimated source weights (resolution 2 m, extension 1 km 

by 1 km) was computed for each half-hour and station position. The overlap between the 

footprints of two simultaneously measuring towers was then quantified as: 

 (3.3) 

The indices 1 and 2 indicate the tower and t the time (in our case, half-hour). N and M are the 

number of pixels in east-west and north-south direction, x and y the respective running indices. 

The minimum function min() includes the source weight f computed for the respective tower, x 

and y location, and half-hour. O is 1 if both source weight grids are identical, and 0 in case of 

no overlap. During stable conditions, the footprint area of a tower increases and can result in 

considerable source weight contributions from outside the modeling domain. Assuming that 

two footprints, which overlap highly in the modeling domain, likely continue to overlap outside 

the modeling domain, O as defined above might be low-biased in such cases. We therefore 

additionally considered a normalized version O/min( f1, f1) as an upper limit estimate of 

the overlap. The overlap for the additional sites Kall and Merzenhausen more than 20 km away 

was assumed zero. 

3.3.6. Comparison measures 

To compare and evaluate the two-tower based uncertainty estimates, the random error estimates 

were calculated based on Mauder et al. (2013) as a reference. This reference method is 

independent of the two-tower based approach, because data of only one EC tower are used to 

quantify the random error of the measured fluxes and raw data instead of the processed fluxes 

are used. The raw-data based random error estimates  the instrumental noise  and the 

stochastic error   were calculated independently. Mauder et al. (2013) determine the 

instrumental noise based on signal autocorrelation. Following Finkelstein and Sims (2001) the 

stochastic error is calculated as the statistical variance of the covariance of the flux observations. 

Generally,  was considerably lower than . The total raw-data based random error 

 -2s-1] was calculated by adding  and  

) according to Aubinet et al. (2011, p.176). The mean reference used 

for the evaluation of the two-tower based random error estimates was calculated by averaging 

the single half-hourly values for the permanent EC1 tower in Rollesbroich. In order to be 
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consistent with the two-tower based calculations, exactly the same half-hourly time steps of the 

EC1 data series used for the two-tower based uncertainty estimation were used to calculate the 

corresponding mean reference values cov. As indicator for the performance of the two-tower 

based uncertainty estimation schemes applied for the five different EC tower distances, the 

relative difference cov [%] of a two-tower based uncertainty value [ mol m-2 s-1] and cov 

[ mol m-2 s-1] was calculated: 

 (3.4) 

Then, cov values were compared for the different EC tower separation distances and two-

tower based uncertainty estimation schemes. The performance of the two-tower based 

uncertainty estimation was considered better if cov  was closer to zero. 

3.4. RESULTS 

3.4.1. Classical two-tower based random error estimates 

Figure 3.2 and Figure 3.3 show the linear regressions of the random error  (also referred to 

as function of the NEE magnitude according to the 

classical two-tower approach for the different EC tower distances without weather-filter (Figure 

3.2) and with weather-filter (Figure 3.3). The dashed linear regression lines denote that the 

linear correlation between  and NEE is weak (p > 0.1), which is in particular true for the 

positive NEE values measured for 173 m and 20.5 km EC tower distances as well as for the 

negative NEE values for 20.5 km and 34 km distance. Uncertainty estimation with the classical 

two-tower approach is critical for those larger distances because measured flux differences 

caused by different environmental conditions at both EC towers can superimpose the random 

error signal, which e.g. originates from instrumental or turbulence sampling errors. This 

weakens the correlation of the random error and the flux magnitude. This is not surprising since 

Hollinger et al. (2004) and Richardson and Hollinger (2005) already pointed out that similar 

environmental conditions are a basic assumption of the two-tower approach. Therefore, 

statements on how the weather filter affects the mean uncertainty estimate  for those large 

distances need to be treated with caution.  
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Figure 3.2: NEE uncertainty  determined with the classical two-tower approach as function of the NEE 
flux magnitude for the EC tower distances 8m (a), 95m (b) , 173m (c), 20.5km (d) and 34 km 
(e). (Dashed line: regression slope not significantly different from zero (p>0.1)). 
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Figure 3.3: NEE uncertainty  determined with the classical two-tower approach as function of the NEE 
flux magnitude including the application of the weather-filter for the EC tower distances 8m (a), 
95m (b) , 173m (c), 20.5km (d) and 34km (e). (Dashed line: regression slope not significantly 
different from zero (p>0.1)). 
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The weather-filtering only increased the correlation between the flux magnitude and the random 

error  for positive fluxes for separation distances of 173 m and 20 km whereas in most 

cases the linear correlation was weakened, mainly due to a decreased number of samples in 

each averaging group of the NEE flux magnitude. Therefore, testing stricter weather-filter 

criteria -2 s-1, Temp < 2 °C), which caused a 

decline of samples in each group from e.g. n > 1000 to 24 or less, resulted in little meaningful 

results.  

As illustrated in Table 3.3, the mean NEE uncertainty estimate based on the classical two-tower 

approach increased as a function of EC tower distance. However, without applying the weather-

filter, the mean uncertainty  was nearly identical for the two largest distances (20.5 km and 

34 km), although e.g. the land cover and management in Merzenhausen (EC3 tower at 34 km 

separation) were different from the Rollesbroich site. As a result of the weather-filtering, the 

mean uncertainty was less overestimated for the distances 173m and 20.5 km. However, for the 

95 m and 34 km distance, the overestimation of the uncertainty estimate increased by the 

weather-filtering. This implies that for the classical two-tower approach (without sfd-

correction) weather-filtering did not clearly reduce the overestimation of the uncertainty for 

largest EC tower distances (20.5 km and 34 km) where weather-filtering is expected to be 

particularly relevant.  

Table 3.3: Mean NEE uncertainty [ mol m-2 s-1] for five EC tower distances estimated with the classical two-
tower approach, with and without including a weather-filter ( ,  f). and with the 
extended two-tower approach (sfd-correction), also with and without including a weather-filter 
(  corr,  corr,f ). The table also provides the random error cov [ mol m-2 s-1] estimated with 
the raw-data based reference method (Mauder et al. 2013).  

 

EC tower 
distance 

N  cov ) f cov ) corr cov ) corr,f cov) cov 

8m 3167 0.76 (18.8)  0.77 (20.5) 0.44 (-30.6) 0.44 (-30.8) 

95m 3620 1.30 (116.7) 1.50 (149.4) 0.65 (8.2) 0.60 (0.2) 

173m 2410 2.04 (98.5) 1.82 (77.0) 1.03 (-0.3) 1.00 (-2.5) 

20.5 km 2574 2.72 (200.6) 2.35 (159.7) 1.52(67.8) 1.16 (28.7) 

34 km 15571 2.73 (274.7) 2.86 (292.4) 1.18 (61.5) 1.14 (56.8) 

mean  1.91  1.86  0.98  0.93  

 ( cov ): relative differences [%] between two-tower based uncertainty estimates and the references value cov 
(Equation 3.4) 
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Comparing the mean uncertainty estimates of the classical two-tower approach with the 

reference random error estimates cov, indicates that both with and without weather filter the 

uncertainties were overestimated (Table 3.3), for all EC tower differences. This could be 

expected for the large distances, because basic assumptions for the application of the classical 

two-tower approach are violated for these large distances. But results illustrate that even for 

short EC tower distances NEE uncertainty estimated with the classical two-tower approach is 

larger than the raw-data based estimates (Table 3.3). 

3.4.2. Extended two-tower approach 

The scatter plots in Figure 3.4 illustrate the effect the sfd-correction (Equation 3.2) had on the 

difference of the NEE data simultaneously measured at both EC towers. The sfd-correction 

reduced the bias and scattering, because systematic differences of the measured fluxes, e.g. 

induced by different environmental conditions, were removed. As expected, the effect of the 

sfd-correction was considerably higher for the larger EC tower distances because environmental 

conditions are also expected to differ more if the distance of two locations is larger. For the 8 

m EC tower distance for instance, the effect of the sfd-correction is very minor because 

footprints are often nearly overlapping. However, for the EC tower distances >= 173 m, the bias 

and scattering of NEE-EC1- and NEE-EC2- was considerably reduced by the sfd-correction. 

A comparison of Figure 3.2 and Figure 3.5 illustrates how the sfd-correction affected the linear 

regression of the NEE standard error as function of NEE flux magnitude: The sfd-correction 

considerably enhanced the correlation of NEEcorr and the standard error ( corr for the EC tower 

distances 20.5 km and 34 km from R2 >= 0.15 to R2 >= 0.43.  

Applying the sfd-correction (without weather-filter) reduced the mean uncertainty value by 

41.6% to 56.9% for the EC tower distances from 8 m to 34 km. The relative differences cov 

indicate that the correction for systematic flux differences considerably improved the two-tower 

based uncertainty estimate for the distances > 8 m (Table 3.3): The difference cov was 

notably smaller (< 56.8%) for all distances except the 8 m distance compared to cov 

determined with the classical two-tower approach (< 274.7%). The most considerable 

improvement was achieved for the 95 m EC tower distance and the 173 m distance. Additional 

application of the weather-filter (Figure 3.6) on the sfd-corrected NEEcorr data reduced the mean 

uncertainty estimate corr by 23.3% and 2.9% for the 20.5 km and the 34 km EC tower 

distance and reduced cov by 57.7% and 7.7%. The effect of the weather-filter on the 

uncertainty estimates of the shorter EC tower distances was very minor (Table 3.3). The 
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uncertainty estimates corr,f determined with the extended two-tower approach agree best 

with the independent reference values cov for the EC tower distances 95m and 173 m, 

suggesting that those distances were most suitable for the application of the extended two-tower 

approach.  

 

Figure 3.4: Scatter of the NEE measured at EC1 (NEE-EC1-) and NEE measured at a second tower EC2/EC3 
(NEE-EC2-) for the uncorrected NEE (left) and the sfd-corrected NEEcorr (right) for the EC tower 
distances 8m (a), 95m (b) , 173m (c), 20.5km (d) and 34km. 
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Figure 3.5: NEE uncertainty )corr determined with the extended two-tower approach as function of sfd-
corrected NEEcorr magnitude (Equation 3.2) for the EC tower distances 8m (a), 95m (b), 173m 
(c), 20.5km (d) and 34 km (e) (Dashed line: regression slope not significantly different from 
zero (p>0.1)). 
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Figure 3.6: NEE uncertainty )corr determined with the extended two-tower approach as function of sfd-
corrected NEEcorr magnitude (Equation 3.2) including application of the weather-filter for the 
EC tower distances 8m (a), 95m (b) , 173m (c), 20.5km (d) and 34km (e) (Dashed line: 
regression slope not significantly different from zero (p>0.1)). 
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3.5. DISCUSSION 

The results show that the two-tower based uncertainty estimates (both classical and extended 

two-tower approach) were smallest for the 8 m distance. This can be explained with the results 

of the footprint analysis: While the average percentage footprint overlap is 13% (normalized 

19%) for the 95 m EC tower distance and only 4% (7%) for the 173m EC tower distance, it is 

68% (80%) for the 8 m EC tower distance. The stronger overlap of the 8 m distance footprint 

areas is associated with a more frequent sampling of the same eddies. As a consequence, part 

of the random error was not captured with the two-tower approach. If EC towers are located 

very close to each other (< 10 m) and the footprint overlap approaches 100%, only instrumental 

errors and stochasticity related to sampling of small eddies will be captured with the two-tower 

based uncertainty estimate. Because the EC measurements are statistically not independent if 

the footprints are overlapping, the classical EC tower method is not expected to give reliable 

uncertainty estimates for very short EC tower distances (Hollinger et al., 2004; Hollinger and 

Richardson, 2005). However, without applying the sfd-correction, the mean uncertainty 

estimate  was higher than the raw-data based reference value cov, which includes both the 

instrumental noise and the stochastic error . The raw-data based  itself was 

-2 s-1 -2s -1 for the dataset of the 8 m EC tower distance. The 

mean uncertainty value derived with the extended two-tower approach corr,f for the same 

dataset was lower than  but still considerably higher than , suggesting that even at 8 

m EC tower distance instrumentation errors were only a minor part of the two-tower based 

uncertainty estimate. For the larger separation distances 95 m or 173 m with notably less 

footprint overlap turbulence sampling errors are almost fully accounted for by a two-tower 

approach. (It should be noted that forest stations, with a typically larger aerodynamic 

measurement height and footprint size, will require larger separation distances). However, 

different land surface properties and management are more likely for the larger separation 

distances and can cause systematic flux differences that should not be attributed to the random 

error estimate. As outlined in Chapter 3.2, land surface properties related to management (e.g. 

nutrient availably due to fertilization), soil properties (bulk density, skeleton fraction), soil 

carbon-nitrogen pools, soil moisture and soil temperature are heterogeneously distributed at the 

Rollesbroich site. The effect of soil moisture, soil temperature and soil properties on CO2 fluxes 

(respiration mainly) is well known (Lloyd and Taylor, 1994; Orchard and Cook, 1983; Xu et 

al., 2004; Flanagan and Johnson, 2005; Herbst et al., 2009) as well as the role of grassland 

management (e.g. Allard et al., 2007) Results indicate that an overestimation of the two-tower 
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based uncertainty caused by different land surface properties in the footprint area of both EC 

towers can be successfully filtered out by the extended approach. It should be noted that a 

shorter moving average interval of the sfd-correction term (e.g. 6 hours instead of the applied 

12 hours window; Table 3.4), results in slightly lower uncertainty estimates compared to the 

- NEE data related to a 

too short moving average interval for calculating the sfd-correction term. It needs to be 

emphasized that the estimated mean NEE values of the moving average intervals are associated 

with uncertainty. As mentioned, the moving average interval should be long enough to exclude 

random differences of the simultaneously measured fluxes but short enough to limit the impact 

of non-stationary conditions. However, the 12hr running mean NEE1 and NEE2 values ( ) 

as well as the respective means of NEE1 and NEE2 ( ) used to calculate NEEcorr 

(Equation 3.2) are uncertain because they still contain the random error part, which cannot be 

corrected or filtered out. This uncertainty in the mean is expected to be higher for a shorter 

averaging interval such as 6 hours. Therefore, completely correcting the difference in mean 

NEE slightly overcorrects systematic differences in NEE. In general, results were not very 

sensitive to different moving average sizes of the sfd-correction term and data coverage 

percentages defined for this interval (Table 3.4).  

Table 3.4: Relative difference [%] of mean uncertainty corr,f estimated with the extended 
two-tower approach and the reference cov for EC tower distances > 8m. 

black: mean cov for 95m and 173m distance ; grey: mean cov for 20.5 km and 34 km distance 

It is expected that systematic differences in measured NEE caused by spatially variable land 

surface properties are stronger during the night than during the day since they affect respiration 

more directly than photosynthesis (see e.g. Oren et al., 2006). Moreover, during night-time 

and/or winter (positive NEE), some conditions associated with lower EC data quality such as 

low turbulence, strong stability, and liquid water in the gas analyzer path prevail more often 

than in summer and/or daytime (negative NEE). The less severe cases of such conditions are 

not always completely eliminated by the quality control. In time series of eddy-covariance 

fluxes this typically shows up as implausible fluctuations of the flux during calm nights. This 

is reflected by plots of NEE flux magnitude versus uncertainty (Figure 3.2-3.3, Figure 3.5-3.6) 
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showing higher uncertainties for positive compared to negative NEE data which agrees with 

previous findings (e.g. Richardson et al., 2006).  

At very large EC tower distances (20.5 km, 34 km) footprints were not overlapping and the 

environmental conditions were considerably different; in particular for the EC tower set-up 

Rollesbroich/Merzenhausen with different land use (grassland/crop) and climate conditions. 

For those distances, the relative difference cov between cov and  (classical two-tower 

approach) was much larger than cov between cov and corr,f (extended two-tower 

approach). cov was reduced by 85.7% for the 20.5 km distance and 79.3% for the 34 km if 

both sfd-correction and weather filter were used. However, after applying the sfd-correction 

and the weather-filtering, the mean uncertainty estimate was still higher than the raw-data based 

reference value (Table 3.3), suggesting that for these large EC tower distances the sfd-correction 

and the weather-filter do not fully capture systematic flux differences and uncertainty is still 

overestimated by the extended two-tower approach. This can have different reasons. We assume 

the major reason is that the weather-filter is supposed to capture all measured flux differences 

that can be attributed to different weather conditions at both EC towers, which cannot be 

captured with the sfd-correction. Applying stricter thresholds could increase the efficiency of 

the weather filter but in our case the reduced dataset was too small to allow further analysis. In 

general, the weather-filter did not improve the uncertainty estimates as much as the sfd-

correction. However, this does not imply that differences in weather conditions are negligible 

when applying the extended two-tower approach for larger EC tower distances. In fact the 

systematic part of measured EC flux differences between both towers caused by (steady, 

systematic) among-site differences in weather conditions were already partly captured with the 

sfd-correction. In contrast, such systematic differences were difficult to capture with the 

weather-filter because much lower thresholds would have been required.  

 The absolute corrected and weather-filtered uncertainty value corr,f 
-2 s-1] was 

slightly lower for the 34 km EC tower distance than for the 20.5 km EC tower distance (Table 

3.3). The raw-data based reference cov 
-2 s-1] however was also smaller for the 34 km 

dataset than for the 20.5 km dataset which can be related to the different lengths and timing 

(i.e., different seasons) of the measurement periods for each of the five EC tower distances: The 

roving station was moved from one distance to another within the entire measurement period 

of ~ 27 months. During this entire time period of data collection, the length and timing of the 

single measurement periods varied for the five EC tower separation distances (Table 3.1). This 

is not optimal because the random error is directly related to the flux magnitude and the flux 
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magnitude itself is directly related to the timing of the measurements. Because in spring and 

summer flux magnitudes are higher, the random error is generally higher as well (Richardson 

et al., 2006). To reduce this effect, spring/summer as well as autumn/winter months were 

captured in each measurement period. However, the timing of the measurements and the amount 

of data available were not the same for the five EC datasets. In particular the permanent EC 

tower in Merzenhausen was measuring considerably longer (> 2 years) than the roving station 

did for the other four EC tower distances. Therefore, differences of the mean uncertainty 

estimates for the five measurement periods were partly independent of the EC tower distance. 

This effect gets obvious when looking at the mean uncertainties cov estimated with the 

reference method, which should be independent of the distance but were also found to be 

different for each dataset of the five EC tower distances. Against this background, statements 

about how EC tower distances affect the two-tower based uncertainty estimate need to be treated 

with caution.  

The NEE uncertainty corr,f estimated for the grassland site Rollesbroich agree well with the 

NEE uncertainty values for grassland sites by Richardson et al. (2006), and also the regression 

coefficients (Figure 3.2-3.3, Figure 3.5-3.6) do not show large differences. This can be expected 

since Richardson et al. (2006) applied their method for a very well-suited tower pair with low 

systematic differences, such that the classical approach and our extended approach should 

approximately converge. However, identical results are unlikely because even for two very 

similar neighboring sites some systematic differences occur. In addition, the random error is 

expected to vary between sites (see e.g. Mauder et al., 2013) which is in part related to 

instrumentation.  

3.6. CONCLUSIONS 

When estimating the uncertainty of eddy covariance net CO2 flux (NEE) measurements with a 

two-tower based approach it is important to consider that the basic assumptions of identical 

environmental conditions (including weather conditions and land surface properties) on the one 

hand and non-overlapping footprints on the other hand are contradicting and impossible to 

fulfill. If the two EC towers are located in a distance large enough to ensure non overlapping 

footprints, different environmental conditions at both EC towers can cause systematic 

differences of the simultaneously measured fluxes that should not be included in the uncertainty 
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estimate. This study for the grassland site Rollesbroich in Germany showed that the extended 

two-tower approach, which includes a correction for systematic flux differences (sfd-

correction) can be used to derive more reliable (less overestimated) uncertainty estimates 

compared to the classical two-tower approach. An advantage of this extended two-tower 

approach is its simplicity and the fact that there is no need to quantify the differences in 

environmental conditions (which is usually not possible due to a lack of data). Comparing the 

uncertainty estimates for five different EC tower distances showed that the mean uncertainty 

estimated with our extended two-tower approach for the 95 m and 173 m distances were nearly 

identical to the random error estimated with the raw-data based reference method. This suggests 

that these distances were most appropriate for the application of the extended two-tower 

approach in this study. Accordingly, the regressions in Figure 3.6(b,c) are considered to be most 

reliable. Also for the largest EC tower distances (20.5 km, 34 km) the sfd-correction 

significantly improved the correlations of the flux magnitude and the random error and 

significantly reduced the difference to the independent, raw-data based reference value. We 

therefore conclude that if no second EC tower is available at a closer distance (but available 

further away), a rough, probably overestimated NEE uncertainty estimate can be acquired with 

the extended two-tower approach although environmental conditions at the two sites are not 

identical. 

A statement about the transferability of our experiment to other sites and EC tower distances 

requires further experiments. However, we assume transferability is given if both EC towers 

are located at sites of the same vegetation type (e.g. C3-grasses, C4-crops, deciduous forest, 

coniferous forest, etc.). Flux differences caused by a different phenology can be very hard to 

separate from the random error estimate, even though they are expected to be mainly systematic 

and could therefore be partly captured with the sfd-correction. Moreover, the EC raw data 

should be processed in the same way (as done here) and the measurement devices should be 

identical and installed at about the same measurement height. Important is also that the 

instruments are calibrated thoroughly and consistently. Because this was true for the three EC 

towers included in this study, we conclude that systematic flux differences that are corrected 

for with the sfd-correction arise mainly from different environmental conditions whereas 

calibration errors are assumed to have a very minor effect. Different weather conditions at both 

EC tower sites are a main drawback for applications of the two-tower approach. While 

systematic differences of the weather conditions are expected to be captured by the sfd-

correction, less systematic weather fluctuations e.g. related to cloud movement, are difficult to 

be filtered of the two-tower based uncertainty estimate. Applying very strict thresholds can lead 
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to a too small dataset, especially if the measurement periods are short. If EC raw data is 

available, we recommend to use an uncertainty estimation scheme like the one presented in 

Mauder et al. (2013). Raw-data based NEE uncertainty estimation methods like the one 

suggested by Finkelstein and Sims (2001) and implemented by Mauder et al. (2013) have not 

been extensively applied yet and  to the best of our knowledge  never been compared to the 

ones derived with the more well-known two-tower approach. The fact that the two uncertainty 

estimates (extended two-tower approach and raw-data based reference) give very similar results 

therefore contributes to the confidence in both methods.  
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NEE at European sites 

*adapted from: Post, H., Vrugt, J.A., Fox, A., Vereecken, H., Hendricks Franssen, 2016. Estimation of Community 
Land Model parameters with DREAM(zs) for an improved assessment of net carbon fluxes at European 
sites (under review for the Journal of Geophysical Research - Biogeosciences). 

4.1. INTRODUCTION 

Land surface models (LSMs) such as the Community Land Model (CLM) (Oleson et al., 2013) 

simulate a myriad of highly interrelated water, energy, and nutrient fluxes and processes 

surface. LSMs are used widely to help analyze, understand, and 

predict the effects of environmental change on the hydrological and biogeochemical cycles of 

terrestrial ecosystems, and the impact of those changes (e.g., changes in carbon fluxes or albedo) 

on the atmosphere and the climate. In this context a major question to be answered is how the 

land carbon sink  including vegetation dynamics and soil carbon stocks  respond to climate 

and land use change (Quéré et al., 2012; Arora et al., 2013; Brovkin et al., 2013; Todd-Brown 

et al., 2014). The 5th Coupled Model Intercomparison Project (CMIP5) indicates that there are 

considerable uncertainties and model discrepancies related to carbon stock predictions (Piao et 

al., 2013). These discrepancies can be attributed to (1) model structural deficiencies (epistemic 

errors) due to inadequate and/or imperfect process knowledge and description, (2) wrong model 

parameter values, (3) uncertainty and biases in the initial values of the state variables, and (4) 

measurement uncertainty of the meteorological and land surface model input data (Piao et al., 

2013; Todd-Brown et al., 2013). 

Todd-Brown et al. (2013) found that model parameterization was a major source of diverging 

soil carbon predictions by different LSMs used in CMIP5. In most physical models, the 

parameters are often believed to be time-invariant (constant) and ascribed some fixed, or 

 (Richardson et 

al., 2007; Mo et al., 2008; Williams et al., 2009; Kuppel et al., 2014) and demonstrate that 

certain LSM parameters vary dynamically in space and time, and possibly depend on 

environmental conditions. For example, consider the temperature sensitivity coefficient Q10, 

which quantifies using a single value the fractional change of the respiration rate in response to 
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a 10°C temperature rise. This parameter exerts a strong control on the simulated carbon 

dynamics of land surface models such as CLM (Post et al., 2008; Hararuk et al., 2014). Various 

empirical and modeling studies have found the value of Q10 to vary dynamically in space and 

time, depending on the sites soil moisture conditions (Flanagan and Johnson, 2005; Kätterer et 

al., 1998; Reichstein et al., 2005), mean annual temperature (Kirschbaum, 2010, 1995) and 

quality of soil organic matter (Leifeld and Fuhrer, 2005; Rey et al., 2008). The maximum rate 

of carboxylation at 25°C, often referred to as Vcmax25 is another key parameter, which affects 

strongly the predicted carbon fluxes of LSMs (Wang et al., 2007; Bonan et al., 2011; Göhler et 

al., 2013). This parameter is difficult to measure directly in the field, and CLM calibration of 

its value suffers heavily from model structural errors. As discussed in Bonan et al. (2011), this 

Vcmax25 . 

Mo et al. (2008) found significant seasonal and inter-annual variations of Vcmax25 and the (Ball-

Berry) slope of the stomatal conductance-photosynthesis relationship using data assimilation of 

an ecosystem model. As a consequence, these authors have criticized LSM calibration methods 

that do not recognize properly the role of the initial states and temporal parameter variations.  

Model calibration is a common approach to estimate parameters that cannot be measured 

directly in the field or laboratory. 

vector of parameter values that minimizes (or maximizes, if appropriate) some objective 

function of error residuals without recourse to investigating estimation of parameter and model 

process of statistical inference using Bayesian analysis of modeling uncertainties. Yet, such 

approach is very challenging for LSMs as Todd-Brown et al. (2013) highlight that the CMIP5 

models, including CLM, may suffer serious epistemic errors, in particular with respect to abiotic 

and biotic processes. These model structural deficits affect parameter estimation, as wrong 

process representations can often be compensated for by erroneous parameter values (Williams 

et al., 2009). Parameter estimation can only help maximize model performance, not fix 

structural errors (Braswell et al. 2005). Nevertheless, this approach can provide guidance on 

epistemic errors, thereby increasing our collective understanding of the processes and drivers 

that determine the magnitude size and spatiotemporal patterns of carbon fluxes (Verbeeck et 

al., 2011). 

Historically, calibration approaches have been developed to estimate model parameters, 

whereas data assimilation methods such as the Ensemble Kalman Filter (EnKF) have focused 

on inference of state variables (Raupach et al., 2005). However, due to spatial-temporal 

variability of certain parameters and the close link between model states and parameters, the 
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conceptual distinction of model states and parameters is increasingly being considered arbitrary 

and with it methods to estimate them. Accordingly, sequential data assimilation methods such 

as the EnKF are increasingly being used to estimate ecosystem parameters for carbon flux 

predictions (Hill et al., 2012; Kuppel et al., 2012) and traditional Bayesian parameter estimation 

methods can serve for model state and parameter estimation (Braswell et al., 2005; Verbeeck et 

al., 2011; Hill et al., 2012; Kuppel et al., 2012). Different model-data fusion studies from point 

to global scale found that modeled land surface fluxes can be well constrained with eddy 

covariance data (Braswell et al., 2005; Knorr and Kattge, 2005; Xu et al., 2006; Mo et al., 2008; 

Verbeeck et al., 2011; Hill et al., 2012; Kuppel et al., 2012). However, studies highlight that 

only a few sensitive parameters (and states) can be well constrained to substantially improve 

NEE predictions (Wang et al., 2001; Santaren et al., 2007; Verbeeck et al., 2011).  

Many previous model-data fusion studies for carbon flux estimation have focused on single 

forest ecosystems (Braswell et al., 2005; Williams et al., 2005; Santaren et al., 2007; Keenan et 

al., 2012; Mo et al., 2008; Verbeeck et al., 2011; Kato et al., 2012; Kuppel et al., 2012, 2013; 

Rosolem et al., 2013; Santaren et al., 2013) and have used simple ecosystem models instead of 

complex land surface models to simulate NEE. Notable exceptions are studies based on the 

CSIRO Biosphere Model (CBM) (Wang et al., 2001, 2007) or the ORCHIDEE model (Kuppel 

et al., 2014, 2012; Santaren et al., 2013, 2007; Verbeeck et al., 2011) that have used gradient-

based algorithms for parameter estimation. These algorithms are not best suited to constrain 

highly dimensional, nonlinear LSMs, because they are prone to become stuck in a local 

minimum during the optimization process rather than finding the global minima (Williams et 

al., 2009). This is related to the challenge of equifinality (Beven and Freer, 2001; Mitchell et 

al., 2009; Laloy and Vrugt, 2012), i.e. multiple optimal parameter sets that generate equally 

good model outputs, which has been shown to be a major source of errors in simulated land 

surface fluxes including NEE (Schulz et al., 2001; Williams et al., 2009; Luo et al., 2009; Todd-

Brown et al., 2013). Accordingly, Bayesian methods like Markov Chain Monte Carlo (MCMC) 

are considered more suited to estimate LSM parameters (Santaren et al., 2013). The main reason 

why MCMC approaches have not been generally applied to estimate LSM parameters is that 

computational demand is very high compared to other approaches.  

For CLM, studies on calibration or estimation of ecosystem parameters in order to improve 

modeled carbon fluxes are very rare. Bilionis et al. (2015) estimated CLM parameters for 

soybean using a sequential MCMC approach and showed a significant improvement of 

predicted carbon pools and fluxes. Mao et al. (2016) showed that optimized CLM parameters 

reduced the misfit between modeled and measured soil respiration by 77% for a pine stand 
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forest. Several studies estimated ecosystem parameters of other models separately for different 

PFTs (He et al., 2013; Kuppel et al., 2014; Xiao et al., 2014). This has not been done yet in a 

comprehensive way for CLM.  

As outlined above, ecosystem parameters and initial model states are highly uncertain and 

simultaneously important for carbon flux simulation in LSMs. The objective of this study was 

to obtain a better insight into CLM parameter and initial state uncertainty and the respective 

prospects and challenges to improve simulated NEE via parameter estimation, using measured 

NEE from EC sites in central and western Europe. We estimated key CLM4.5 parameters that 

regulate carbon flux predictions at sites in Germany and France for four different plant 

functional types: C3-grass, C3-crop, evergreen coniferous forest and broadleaf deciduous 

forest. Parameter estimation was done using the multi chain MCMC method DREAM(zs) (Ter 

Braak and Vrugt, 2008; Laloy and Vrugt, 2012; Vrugt, 2016). An advantage of the DiffeRential 

Evolution Adaptive Metropolis (DREAM) algorithm compared to other parameter estimation 

approaches is that (i) MCMC is not limited to Gaussianity, (ii) the full posterior probability 

distribution function (pdf) can be determined and (iii) the complete time series is considered at 

once in the parameter estimation (in contrast to e.g. sequential data assimilation methods). One 

hypothesis is that parameters estimated separately for single seasons instead of a complete year 

of NEE data would enhance model-data consistency more. The second hypothesis we tested is 

that carbon flux relevant model parameters and initial states are correlated and thus estimated 

parameter values differ if estimated jointly with the initial model states. Accordingly, a second 

objective is to estimate, evaluate and compare parameter estimates obtained with or without 

joint estimation of initial model states, under consideration of the respective uncertainty ranges. 

In this context we tested whether parameters estimated jointly with the initial model states 

would outperform the parameters estimated without initial states.  

4.2. DATA AND METHODS 

4.2.1. Eddy covariance sites and evaluation data 

The half-hourly NEE data measured at four eddy covariance sites with different land cover 

types were used for CM parameter estimation (Figure 4.1). Three of the four sites are located 

in the Rur catchment and are part of the TERENO network (Zacharias et al., 2011). The 

extensively used C3- 6219142°N; 6.3041256°E] is 
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located in the Eifel region of western Germany at 514.7 meters above sea level (MASL). The 

°N / 6.2969924°E] is located 34 km 

northeast of RO in an agricultural lowland region. For further details see (Post et al., 2015). The 

EC raw data for both sites were processed with the TK3.1 software (Mauder and Foken, 2011), 

which includes a standardized quality assessment system and uncertainty estimation scheme as 

presented in Mauder et al. (2013). For RO, the statistically derived uncertainty estimates 

(Mauder et al., 2013) were verified with uncertainty estimates based on an extended two-tower 

approach (Post et al., 2015) WÜ °N; 

6.33138251°E] is located in the Eifel national park at 606.9 MASL and is covered by spruces. 

EC data for WÜ was processed with the software ECpack (Dijk et al., 2004) and with an 

additional post-processing according to Graf et al. (2014). NEE time series were available from 

June 2010 to May 2013 (WÜ) and from May 2011 to Dec. 2013 (RO, ME). Only non-gap filled, 

half-hourly data with quality flag 0 (high quality data) and 1 (moderate quality data) based on 

the quality assessment described in Mauder et al. (2013) were used in this study. 

In addition to RO, ME and WÜ, we used FLUXNET data provided for the Fontainebleau 

deciduous forest site in France (FR-Fon) [48.4763°N, 2.7801°E] (from year 2005-2008) for 

parameter estimation. For this site no additional information such as site management was 

available. 
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Figure 4.1: European eddy covariance sites used for parameter estimation (ME, RO, WÜ, FR-Fon), and 
model evaluation (all sites). 

 

Four additional FLUXNET sites (Figure 4.1) served as evaluation sites: the grassland site 

Grillenburg (DE-Gri [50.9495°N, 13.5125°E]), the coniferous forest site Tharandt (DE-Tha 

[50.9636°N, 13.5669°E]), the agricultural site Klingenberg (DE-Kli, [50.8929°N, 13.5225°E]) 

and the deciduous forest site Hainich (DE-Hai, [51.0793°N, 10.4520°E]). Gap-filled Level 4 

data for those FLUXNET sites were available for the years 2009-2012 (DE-Gri, DE-Tha, DE-

Kli) and for the years 2005-2008 (DE-Hai). Again, only NEE data with quality 0 (original), 1 

(most reliable) and 2 (medium reliable) were included in the analysis, while data with flag 3 

(least reliable data) were not included. As uncertainty of FLUXNET NEE eddy covariance data 

was not provided, we estimated the NEE measurement uncertainty for the FLUXNET sites 

based on the linear regression functions obtained from the extended two-tower approach 

presented in Chapter 3.4.2, Figure 3.6(b). 

4.2.2. CLM4.5 set-up and input data 

For each site, CLM4.5BGC was set up using basic site specific input data. For each soil layer, 

the soil texture (percentage clay and sand) was defined. For the sites RO, WÜ and ME the 

German soil map (BK50) served as basis. For the FLUXNET sites no information on soil texture 

was available. Therefore, the soil texture for the forest sites was defined as for WÜ, and the soil 
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texture for DE-Kli and DE-Gri like ME and RO respectively. For all sites, the coverage by the 

site-specific PFT was set to 100%, which implies that smaller contributions of other PFTs 

within the EC-footprint were neglected. Winter wheat in CLM4.5 had not been parameterized 

or validated yet, so the winter wheat site ME was defined as C3-crop, which is treated like a 

non-managed C3-grass.  

CLM was driven by the COSMO-DE reanalysis (Baldauf et al., 2009) provided by the German 

Weather Service (DWD) for the sites RO, WÜ and ME. The COSMO-DE data includes hourly 

time series of air temperature, incoming short wave radiation, incoming long wave radiation, 

precipitation, atmospheric pressure, specific humidity and wind speed. The meteorological 

input data (2008-2013) was provided in 2.8 km2 resolution and downscaled to 1 km2 grid 

resolution using nearest neighbor interpolation based on Delaunay triangulation. For the RO 

site gap-filled atmospheric input data measured at the EC tower were available. Half-hourly 

NEE was calculated for 2012 using either local site data or COSMO-DE reanalysis data as 

input. The differences between the simulations were very minor.  

For each site CLM4.5 was spun- -

carbon-nitrogen cycling, using atmospheric input of at least three years (2008-2010 in case of 

RO, WÜ and ME). The respective restart files with initial states were then used for a final 3 

years spin- -spin- -spin-up periods up 

to 100 years but found that results (both carbon pools and fluxes) were nearly identical after a 

3-years and a 100-years exit-spin-up period.  

The CLM set-up and procedure of the evaluation runs at the FLUXNET-sites was nearly 

identical to the parameter estimation runs. However, local meteorological data measured at the 

FLUXNET-sites were used for the CLM spin-up and forward runs. 

4.2.3. Selection of parameters estimated with DREAM(zs) 

In this study, eight CLM4.5 parameters were estimated with DREAM(zs). The selection of these 

eight key parameters (Table 1) was based on a simple, local sensitivity study with 32 

parameters. In the sensitivity study, linear correlation plots between each of the 32 parameters 

and the carbon fluxes (NEE, ER and GPP) were generated and compared, using monthly and 

annual means of different years. 

Sensitivity analysis was carried out for the sites RO, ME and WÜ covering three different PFTs 

(C3-grass, C3-crop, coniferous forest). Sensitivity was tested for the year 2012 and for five 

individual months in 2012 (Mar., May, Jul., Sept., Dec.). For each site, each parameter and each 
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time period 100 different parameter values were sampled by Latin hypercube sampling (LHS). 

The sensitivity was tested by analyzing the average monthly or annual NEE as function of 

variation in the input parameter values. 

Most of the eight sensitive parameters such as Q10, bs, flNR and slatop were found to be critical 

key parameters in previous studies with CLM (Göhler et al., 2013; Foereid et al., 2014) or 

similar models (Post et al., 2008; Hararuk et al., 2014). flNR and slatop are directly used to 

calculate Vcmax25 (Eq.2.4). In addition, slatop directly determines the prognostically calculated 

leaf area index (LAI) in CLM. Q10 is closely linked to mrb because both parameters determine 

the degree of maintenance respiration. In addition, Q10 determines the heterotrophic respiration 

in the decomposition module. rb and c go into the calculation of the effective root fraction 

which determines the root water uptake (Oleson et al., 2013). rb determines the cumulative root 

faction for each soil layer (Zeng et al., 2011). The importance of rb is also consistent with 

previous studies in the Amazonas region (Baker et al., 2008; Verbeeck et al., 2011) showing 

that the root profile parameter (describing the exponential root profile) is a particularly 

important parameter for improving NEE and LE simulated with LSMs. 

The same is true for the Ball-Berry slope of stomatal conductance (bs), which is an important 

key parameter for the calculation of LE and GPP in CLM 4.5, because it determines the water-

use efficiency (WUE), i.e. ratio of CO2 assimilation per unit water loss (Bonan et al., 2014). 

Since bs is dependent on the effective water available for photosynthesis, bs is also linked to rb 

and c. Because not all carbon flux relevant CLM parameters were included in this sensitivity 

study and because sensitivity was tested only qualitatively with a local method that does not 

consider correlation among parameters (and states), it cannot be excluded that other critical 

CLM parameters exist and are not incorporated in this study. However, the intention of this 

study was not to perform an elaborated global parameter sensitivity study but to select only a 

small number of highly sensitive CLM parameters. Parameters showing a high sensitivity only 

at some sites and some months like the soil water potential at full stomatal closure ( c) were 

also included.  

 

4.2.4. Parameter (and initial state) estimation with DREAM(zs) CLM  

Parameter estimation experiments were conducted separately for four sites of different plant 

functional types (PFTs): RO (C3-grass), ME (C3-crop), WÜ (evergreen coniferous forest) and 

FR-Fon (broadleaf deciduous forest). 
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In order to test whether parameter estimates vary seasonally, DREAM(zs)-CLM parameter 

estimation was carried out for four individual seasons as well as for the complete annual time 

series. Five of the eight CLM parameters are PFT-specific (Table 4.1). However, previous 

studies suggested that the parameters Q10, mrb, and bs also could vary depending on the PFT 

(and season) (Mo et al., 2008; Post et al., 2008; Foereid et al., 2014). Therefore, the eight CLM 

parameters were estimated jointly for each site and time period.  

Table 4.1: Parameters estimated with DREAM(zs) including lower bounds (Min) and upper bounds (Max) 
defined for the DREAM prior estimate and used as input to Latin Hypercube Sampling (LHS). 

Short 

name  
Long name [unit] CLM 4.5 default values (Min/Max)    

PFT-parameters C3-grass C3-crop Coniferous forest Deciduous forest 

flNR  
Fraction of leaf N in 
Rubisco enzyme  

0.1365 (0.05/0.35) 0.1758 (0.05/0.35) 0.0509 (0.02/0.15) 0.1007 (0.05/0.35) 

slatop 

Specific Leaf Area 
(SLA) at top of canopy 
[m2/gC] 

0.03 (0.01/0.08) 0.03 (0.01/0.08) 0.01 (0.005/0.08) 0.03 (0.01/0.08) 

gR 
Growth respiration 
factor 

0.3 (0.1/0.4) 0.3 (0.1/0.4) 0.3 (0.1/0.4) 0.3 (0.1/0.4) 

rb  

CLM rooting 
distribution parameter 
[1/m] 

2.0 (0.5/4.0) 3.0 (0.5/4.0) 2.0 (0.5/4.0) 2.0 (0.5/4.0) 

c 

Soil water potential at 
full stomatal closure 
[mm] 

-2.75*105 
(-4.5*105/-1.5*105) 

-2.75*105 
(-4.5*105/-1.5*105) 

-2.55*105 
(-4.0*105/-1.5*105) 

-2.55*105 
(-4.0*105/-1.5*105) 

hard-wired parameters (not PFT-specific) 

Q10 temperature coefficient  1.5 (1.1/3.0)    

mrb 
base rate for 
maintenance respiration  

2.53*10-6 (1.5*10-6/4.5*10-6)   

bs 

Ball-Berry slope of 
conductance-
photosynthesis 
relationship 

9 (5.0/12.0)   
 

Additional experiments were conducted where two multiplication factors for initial CLM states 

were estimated together with the eight CLM key parameters (Table 4.2). Joint parameter and 

initial state estimation was carried out to determine the dependence of the eight parameters on 

the initial model states and because the initial model states are associated with a high 

uncertainty. Two multiplication factors were estimated for the following groups of initial CLM 

states: 

- lCN: living carbon and nitrogen pools (leafc, leafcstorage, frootc, frootcstorage, livecrootc, 

livestemc, livestemcstorage, leafn, leafnstorage, frootn, frootnstorage, livecrootn, livestemn, 

livestemnstorage)  

- dCN: dead carbon and nitrogen pools (litr1c, litr2c, litr3c, soil1c, soil2c, soil3c, litr1n, 

litr2n, litr3n, soil1n, soil2n, soil3n) 
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The factor dCN was applied to dead CN pools for each of the 15 CLM soil layers. The minimum 

and maximum bounds for LHS were set equal to 0.5 and 2.0 respectively for both multiplication 

factors. Joint parameter and initial state estimation was only conducted for the model runs that 

considered the complete year. The two initial state factors were estimated for the beginning of 

the parameter estimation period. 

Table 4.2: CLM4.5 initial states estimated with DREAM(zs).. 

storage storage

storage storage

storage storage

The factors fdC and fdN were applied to dead carbon-nitrogen (CN) pools for each of the 15 

CLM soil layers. Joint parameter and initial state estimation was only conducted for the model 

runs that considered the complete year. The four initial state factors were estimated for the 

beginning of the parameter estimation period. 

Parameters were estimated with DREAM(zs) using half-hourly NEE time series [gC m-2 s-1] 

sampled by LHS using predefined upper and lower parameter bounds as constraints. We used 

three chains (default) for parameter estimation and four chains for the joint parameter and initial 

state estimation.  

4.2.5. Evaluation of the DREAM(zs) derived MAP estimates 

DREAM(zs) estimates for the eight CLM4.5 parameters were evaluated both in time and in 

space. Evaluation in time was carried out for CLM-simulation runs using estimated parameters 

over the year that followed the parameter estimation year (Table 4.3). These evaluation runs 
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were done for the same sites where parameters were estimated. The evaluation year started right 

after the end of the parameter estimation period (1 Dec. 2012 for RO and ME, 1 Jun. 2013 for 

WÜ, 1 Dec. 2006 for FR-Fon). Evaluation in space was carried out by using parameter estimates 

obtained for RO, ME, WÜ and FR-Fon for model simulations at the FLUXNET sites DE-Gri, 

DE-Kli, DE-Tha, and DE-Hai,that have corresponding PFTs to the estimation sites. The four 

FLUXNET evaluation sites were situated ~ 600 km away from the parameter estimation sites.  

 

Table 4.3: DREAM(zs)-CLM parameter estimation periods. 

 

 

The evaluation was made for the one year (1y) and seasonal (s) -based parameter estimates. The 

1y parameter estimates were applied to the whole evaluation run. The seasonal parameters were 

applied during the corresponding season over the course of the year-long evaluation run. In 

order to analyze the impact of the additional initial state estimation on the CLM performance, 

we also evaluated simulated NEE with parameters estimated jointly with the two initial state 

factors dCN and lCN (1yIS) for RO, ME, WÜ and FR-Fon. The evaluation runs were compared 

with the outcome of one additional run with CLM default parameters, which served as a 

reference (Ref.). 

To evaluate the performance of the parameters estimated with DREAM(zs)-CLM, observed NEE 

time series (y) were compared to the modeled NEE time series (m). Chai and Draxler, (2014) 

highlight that any metric to quantify model errors only emphasizes a certain aspect of error 

characteristic. Therefore, it is beneficial to use a combination of different evaluation indices to 

assess model performance. In this study, we used the following evaluation indices:  

(i) the relative difference of the simulated and measured NEE sum [%]: 
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(4.1) 

 

with  = measured half-hourly NEE for a given year,  = modeled equivalent [ mol m-2 s-1] 

and n = sum of all time steps where EC data were available during the evaluation year. We used 

the RD NEE evaluation index, because the NEE sum ( NEE) is in important indicator for the 

longer term carbon sink or source function of an ecosystem. 

(ii) the root mean square error (RMSE) of half-hourly NEE [ mol m-2 s-1], using the same 

time series as for RD NEE: 

 (4.2) 

The RMSE is a commonly used metrics to evaluate model performance and was found to be 

sufficient index for comparing model errors in environmental studies (Chai and Draxler, 2014).   

(iii) The mean absolute difference (MAD) of the mean diurnal NEE cycle: 

 (4.3) 

with  = average modeled NEE at a fixed time during the day and  = measured equivalent 

[ mol m-2 s-1]. Compared are values at a 30 minutes interval for the daily cycle, giving 48 values 

per day. First, four MADdiur_1s indices (one for each season) were calculated separately. Then, 

they were averaged to obtain one evaluation index MADdiur for the complete evaluation year. 

(iv) the MAD of the mean annual NEE cycle: 

 
       (4.4) 

 

with  = average measured NEE [ mol m-2 s-1] for a given month and  = modeled equivalent. 

We introduced MADdiur and MADann herein, because the reproduction of the diurnal or the 

annual NEE cycle is an important indicator on the physical plausibility of the simulated carbon 

fluxes. Since neither the RMSE nor RD NEE provide this information, we decided that MADdiur 

and MADann should be evaluated in order to obtain a more comprehensive picture of model 

performance.  
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The relative improvement  [%] of simulations with estimated parameters compared to 

simulations with default parameters was evaluated as follows:  

. (4.5) 

With IMAPs = evaluation index for NEE modeled with MAPs and Idefault =evaluation index for 

NEE modeled with CLM4.5 default parameters.  

The 95% confidence intervals of the parameters were estimated from the posterior distribution.  

The evaluation runs with estimated parameters were performed for the MAP estimates and for 

CLM ensembles with parameters sampled from the joint pfds (Ens_1y, Ens_1yIS, and Ens_s). 

The indices MADdiur and MADann were determined for the evaluation runs with MAP estimates. 

The NEE sums and RD NEE were also calculated for each of the 60 ensemble members in order 

to determine the respective 95% confidence intervals of the model output.  

4.3. RESULTS  

4.3.1. Evaluation of CLM forward runs with default parameters  

Using default parameters, simulated NEE for the coniferous forest site WÜ and the deciduous 

forest site FR-Fon corresponded better with measured values than for the other sites. For the 

forest sites, summer daytime NEE was slightly underestimated between early spring and late 

autumn. Simulated NEE was slightly positive throughout winter. FLUXNET data for FR-Fon 

indicated slightly higher nighttime respiration magnitudes and also included days with net 

carbon uptake. This is probably a result of non-deciduous vegetation in the EC footprint area.  

Systematic discrepancies between modeled and measured NEE at the grassland site RO were 

observed for the years 2011-2013. Modeled NEE was less negative than observed NEE data 

during summer daytime and considerably less negative in early spring (~March 2012) and late 

autumn (~November 2012), indicating an underestimation of carbon uptake. For ME, model-

data discrepancies were more severe. Carbon uptake was underestimated during daytime and 

until mid-July. However, in mid-July, measured NEE abruptly increased due to the senescence 

of the winter wheat, which was recorded by the camera images that were regularly recorded at 

the site. Because the PFT C3-crop in CLM does not include the senescence of winter wheat, 

simulated NEE did not represent the sudden decrease in GPP and accordingly daytime carbon 

uptake was greatly overestimated from mid-July to mid-September. The model-data 
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discrepancy after the observed senescence of winter wheat was considerably higher than e.g. 

the model-data discrepancy after the harvest in August. As the ME site was managed the same 

way in the years 2011 to 2013, the abrupt shift from underestimation to overestimation of carbon 

uptake in mid-July was present in each of the three years. 

A comparison of measured and modeled NEE at the RO and the ME site indicated that the 

simulated plant onset and offset (i.e. the time when simulated LAI jumps from zero to >0 and 

from >0 to zero respectively) was not represented correctly by CLM for these PFTs, which in 

case of ME is not surprising, since winter temperate cereal is not parameterized yet in CLM4.5. 

In the parameter estimation year 2012, onset was delayed about 2 weeks (observed: beginning 

of March; modeled: mid-March) at both sites. In the evaluation year 2013, onset was delayed 

about one month at the RO site (observed: beginning of April; modeled: beginning of May) and 

about 2 weeks early at the ME site (observed: ~10th of April, modeled: ~25th of March).  

4.3.2. DREAM(zs) parameter (and initial state) estimation 

The number of iterations required for a complete convergence of all parameters with 

DREAM(zs)-CLM was 5000-8000 for seasonal parameter estimation (except ME_sp and FR-

Fon_su where >10000 iterations were required). When parameters were estimated with NEE 

time series for a complete year, parameters generally converged after > 12,000 iterations, except 

for WÜ (~3000 iterations). For illustration, the courses of the convergence diagnostic Rstat for 

one year simulations of WÜ and for FR-Fon are shown in Figure 4.2. 

 

 

 

Figure 4.2: Convergence diagnostics (Rstat) of individual parameters estimated with DREAM(zs) for the 
coniferous forest site WÜ (left) and the deciduous forest site FR-Fon (right) using half-hourly 
NEE data of one year. 
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Table 4.4 summarizes the MAP estimates and the respective 95% confidence intervals (95%CI) 

of the eight CLM parameters for the four different plant functional types and the single seasons 

(s-MAPs). For most sites and parameter estimation periods, the CLM parameters could be well 

constrained with DREAM(zs) and the 95%CI were narrow and close to the MAP estimates. The 

uncertainty ranges of the season-based parameter estimates, i.e. the degree to which parameters 

were constrained, were comprehensible in most cases: The parameter c was most uncertain, 

i.e. the span of the 95%CI was large for most sites and time periods. This is probably related to 

the fact that longer dry phases in this region are very rare. Accordingly, for most sites and time 

periods, the simulated soil moisture is not a limiting factor for the simulated GPP or ER, such 

that NEE is not very sensitive to c. For all sites, bs, which determines the rate of stomatal 

conductance, was most uncertain in winter. This is plausible, given that photosynthesis is 

limited in this period. For site ME, the spread of bs was also high in autumn, which is plausible 

as well, because winter wheat was harvested end of July.  

For all sites except RO, flNR and slatop were also most uncertain in winter. This is reasonable, 

since flNR and slatop determine GPP, which is lowest in winter. Thus, NEE is expected to be less 

sensitive to those parameters in winter. For the other seasons, these parameters could be well 

constrained. The base rate for maintenance respiration mrb was not well constrained in winter 

for all sites except ME. For rb, the uncertainty was particularly high in summer for all sites 

except FR-Fon, where the uncertainty of rb was highest in winter and spring. This indicates that 

for those sites and seasons, simulated NEE was not strongly dependent on the rooting 

distribution.  

Not only the uncertainty ranges, but also the variations of the parameter values estimated for 

the different seasons were plausible for most parameters and sites (Table 4.4). For all sites 

except WÜ, estimated parameter values varied notably among the different seasons and some 

parameters were significantly different for different seasons. Seasonal parameter variations 

were lowest at the evergreen coniferous forest site WÜ. For C3-grass and C3-crop (RO and 

ME), rb was lowest in spring and summer. With lower rb values, a higher percentage of water 

would be taken up by deeper roots. Against this background, both rb and c are assumed to not 

only vary throughout the year, but also inter-annually considering drought years, which 

however was not tested here. Both for RO and ME, estimated values for bs and thus stomata 

conductance were highest in spring. This is plausible, since photosynthetic capacity is high and 

stomatal opening less limited by high temperatures compared to summer.  
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Table 4.4: Season-based estimates for eight CLM parameters determined with DREAM(zs) for different time 
periods and the four sites with different plant functional types. 

flN

0.19
0.19  
0.19

0.019
0.021
0.020  

0.39
0.40  
0.40

1.00
1.27  
1.01

 -3.97*105

-2.58*105

-3.11*105

1.10
1.14  
1.10

3.35*10-6

3.50*10-6

3.48*10-6

7.4, 
9.1, 
8.2  



 63 

 

Chapter 4: Estimation of Community Land Model parameters 
for an improved assessment of NEE at European sites 

In most cases, the estimated parameter values for Q10, mrb and gR were higher than the CLM 

default, which would result in an increase of simulated ecosystem respiration with estimated 

parameters. Particularly estimated Q10 was higher than the CLM default (1.5) for most sites and 

time periods. In case of RO and FR-Fon, both flNR and slatop were highest in spring or summer 

respectively. This is reasonable, given that photosynthetic capacity can be expected highest in 

this period.  

For several parameters and sites, estimated parameters were estimated close to the predefined 

-  One 

example is gR, rb and Q10 for ME (Table 4.4). In those cases, the degree of seasonal variations 

among parameters, jumping from one edge to the other, is not considered realistic. This is 

further discussed in Chapter 4.4.1.  

Table 4.5 summarizes the estimates of the eight CLM parameters based on the whole year 

period with (1yIS) and without (1y) joint estimation of the two initial state multiplication factors 

lCN and dCN. Not only the PFT-specific parameters, but also the non PFT-specific parameters 

mrb, bs and Q10 varied for the different sites or PFTs (Table 4.5). For the forest PFTs, estimated 

Q10 was higher (~ 1.9 - 3.0) compared to C3-grass and C3-crop, where Q10 was <= 2.0. For all 

sites except ME.  

Along with Q10, also estimated values for the Ball-Berry slope of stomatal conductance bs 

clearly differed from the default throughout the different set-ups and sites (Table 4.5). The bs 

parameter was estimated lower (~ 6) than the default (bs = 9) for all PFTs except C3-crop, both 

with and without additional estimation of the two initial state factors. A lower bs implies that 

the water-use efficiency is increased which results in higher CO2 assimilation rates per unit 

water loss. The challenges and possible model development steps in terms of the Ball-Berry 

conductance model are thoroughly outlined in Bonan et al. (2014).  

For all PFTs except coniferous forest, the relative difference between the size of the living and 

dead CN pools differed significantly from the initial states generated with CLM default 

parameters. dCN was >1.6, indicating that the initial amount of the dead plant material (litter 

and soil organic matter pools) was > 60% larger compared to the default set-up. In contrast, 

lCN was < 1.0 for those sites. Thus, the size of initial living CN pools was reduced, especially 

for deciduous forest (lCN=0.5).  
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Table 4.5: One-year based estimates for eight CLM parameters and two initial state multiplication factors, 
determined with DREAM(zs) for different time periods and the four sites (ME, RO, WÜ, FR-Fon) 
with different plant functional types. 

flN

 

For the coniferous forest site WÜ, MAPs for both dCN and lCN were 1.4. Thus, the size of the 

living and dead CN pools was increased but the ratio remained unchanged. The finding that 

dCN and fCN were closer to 1 compared to the other sites may be related to the fact that spruces 

at the WÜ site were planted in the 1940s and since then the site, which is now part of Eifel 

National Park, has not been managed such that the steady state assumption may be more correct 

compared to the other sites. Besides, WÜ was the only site where the uncertainty of lN and dCN 

was relatively large as indicated by the upper and lower 95%CI. Thus, for coniferous forest, 

simulated NEE was less sensitive to the size of the initial carbon-nitrogen pools.  

Some of the estimated parameter values differed significantly depending on whether or not they 

were estimated jointly with lCN and dCN (Table 4.5). For RO and ME for example, Q10 was 
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higher for 1yIS than for 1y. In case of ME and FR-Fon, mrb was significantly lower for 1yIS 

compared to 1y. For FR-Fon, flNR, slatop and rb were significantly higher for 1yIS compared to 

1y. This shows that estimated parameter values are strongly dependent on the amount of initial 

carbon and nitrogen [gC m-2, gN m-2]. Due to this dependency, parameter sets can be considered 

tailored to a specific range of initial states and thus may not be valid if the initial states differ 

notably from the ones parameters were originally estimated for. 

Figure 4.3 and Figure 4.4 highlight that estimated parameters correlate with each other and with 

initial states. For example, Q10 strongly correlates with flNR in case of RO and FR-Fon, and flNR 

correlates strongly with bs. Those among-parameter correlations changed depending on whether 

or not they were estimated jointly with dCN and lCN. For all sites, the correlation between flNR 

and slatop substantially increased when parameters were estimated together with lCN and dCN. 

At the same time, lCN and/or dCN correlated strongly with some of the estimated parameters. 

The direction and the degree of the correlation between parameters (and initial state factors) 

varied among the four sites. This highlights the difficulty in treating processes, initial states and 

parameters separately when examining their contribution to the uncertainty of modeled NEE. 
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Figure 4.3: Spearman correlation coefficients (sp) for the two-dimensional correlations of the posterior 
samples determined with DREAM(zs)-CLM for four sites with a one year time series of eddy 
covariance NEE data. 
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Figure 4.4: Spearman correlation coefficients (sp) for the two-dimensional correlations of the posterior 
samples determined with DREAM(zs)-CLM for four sites with a one year time series of eddy 
covariance NEE data, with estimation of the initial state multiplication factors dCN and lCN for 
the in dead and living CN pools. 

 

4.3.3. Evaluation of the parameter estimates in terms of model performance and 

uncertainty in simulated NEE 

The CLM parameter sets estimated for RO, WÜ, ME and FR-Fon were evaluated in time for 

the evaluation year and in space for the FLUXNET sites DE-Gri, DE-Tha, DE-Kli and DE-Hai 

with corresponding PFTs. 

The mean diurnal NEE cycles for the four seasons in the evaluation year are shown for the 

parameter estimation sites RO (Figure 4.5), ME (Figure 4.6), WÜ (Figure 4.7) and FR-Fon 

(Figure 4.8). The mean diurnal NEE cycles for the four seasons are shown Figure 4.9 (DE-Gri), 

Figure 4.10 (DE-Kli), Figure 4.11 (DE-Tha) and Figure 4.12 (DE-Hai).  
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Figure 4.5: Daily course of (mean) NEE for winter 12/ 13 (a), spring 2013 (b), summer 2013 (c) and 
autumn 2013 (d) for the Rollesbroich site. Individual lines indicate observed NEE (RO_Obs), 
NEE simulated with CLM default parameters (CLM_Ref) and NEE simulated with MAPs 
determined for the one year parameter estimation period (CLM_1y) and for single seasons 
(CLM_s). The 95% confidence intervals are also plotted and were determined by sampling from 
DREAM posterior distributions. 

 

Figure 4.6: Daily course of (mean) NEE for 
autumn 2013 (d) for the Merzenhausen site. Shown are observed NEE with the EC method 
(ME_Obs), NEE simulated with CLM default parameters (CLM_Ref) and NEE simulated with 
MAPs determined for the one year parameter estimation period (CLM_1y) and for single 
seasons (CLM_s). The 95% confidence intervals are also plotted and were determined by 
sampling from DREAM posterior distributions. 
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Figure 4.7: Daily course of (mean) NEE for summer 2012 (a), autumn 2012 (b), winter 2012/2013 (c) and 
spring 2013 (d). Individual lines indicate observed NEE for the W stebach site (WÜ_Obs), NEE 
simulated with CLM default parameters (CLM_Ref), NEE simulated with MAPs determined for 
the one year parameter estimation period (CLM_1y) and for single seasons (CLM_s). The 95% 
confidence intervals are also plotted and were determined by sampling from DREAM posterior 
distributions.   

 

Figure 4.8: Daily course of (mean) NEE for winter 07/ 08 (a), spring 2008 (b), summer 2008 (c) and 
autumn 2008 (d) for the FR-Fon site. Individual lines indicate observed NEE (FR-Fon_Obs), NEE 
simulated with CLM default parameters (CLM_Ref) and NEE simulated with MAPs determined 
for the one year parameter estimation period (CLM_1y) and for single seasons (CLM_s). The 95% 
confidence intervals are also plotted and were determined by sampling from DREAM posterior 
distributions. 
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Figure 4.9: Daily course of (mean) NEE for winter 11/ 12 (a), spring 2012 (b), summer 2012 (c) and 
autumn 2012 (d) for the FLUXNET site DE-Gri. Shown are measurements with the EC method 
(DE-Gri_Obs), NEE simulated with CLM default parameters (CLM_Ref), NEE simulated with 
MAPs determined for the RO site (same PFT: C3-grass) for the one year parameter estimation 
period (CLM_1y) and for the single seasons (CLM_s). The 95% confidence intervals are also 
plotted and were determined by sampling from DREAM posterior distributions. 

 

Figure 4.10: 
autumn 2012 (d) for the FLUXNET site DE-Kli. Shown are observed NEE with the EC method 
(DE-Kli_Obs), NEE simulated with CLM default parameters (CLM_Ref), NEE simulated with 
MAPs determined for the ME site (same PFT: C3-crop) for the one year parameter estimation 
period (CLM_1y) and for the single seasons (CLM_s). The 95% confidence intervals are also 
plotted and were determined by sampling from DREAM posterior distributions. 
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Figure 4.11: Daily course of (mean) NEE for winter 11/ 12 (a), spring 2012 (b), summer 2012 (c) and 
autumn 2012 (d) for the FLUXNET site DE-Tha. Shown are observed values with the EC method 
(DE-Tha_Obs), NEE simulated with CLM evaluation runs using default parameters (CLM_Ref), 
NEE simulated with MAPs determined for the WÜ site (same PFT: coniferous forest) for the one 
year parameter estimation period (CLM_1y) and for the single seasons (CLM_s). The 95% 
confidence intervals are also plotted and were determined by sampling from DREAM posterior 
distributions. 

 

Figure 4.12: Daily course of (mean) NEE for winter 06/ 07 (a), spring 2007 (b), summer 2007 (c) and 
autumn 2007 (d) for the FLUXNET site DE-Hai. The lines shown are observed NEE the EC 
method (DE-Hai_Obs), NEE simulated with CLM evaluation runs using default 
parameters(CLM_Ref), NEE simulated with MAPs determined for the FR-Fon site (same PFT: 
deciduous forest) for the one year parameter estimation period (CLM_1y) and for the single 
seasons (CLM_s). The 95% confidence intervals are also plotted and were determined by 
sampling from DREAM posterior distributions. 
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As indicated by those plots, seasonal- and/or one-year based parameter estimates reduced the 

model-data mismatch in winter and at night for at least two of the four seasons. Thus, respiration 

is probably better represented with estimated parameter values than with CLM default 

parameter values, since the contribution of GPP to the total NEE signal at that time is low. 

Besides, estimated parameters reduced the overestimation of daytime NEE in spring (RO, ME, 

WÜ, FR-Fon, DE-Hai), summer (RO, ME, WÜ, DE-Gri, DE-Hai) and autumn (RO,WÜ, FR-

Fon DE-Gri, DE-Tha, DE-Hai). At that time, the relative contribution of GPP to the total NEE 

signal is higher than the relative contribution of ER. Thus, the reduced NEE model-data 

mismatch in those cases mainly attribute to a reduced underestimation of carbon uptake, i.e. a 

higher GPP simulated with estimated parameters.  

The mean diurnal NEE cycles were evaluated using MADdiur. As shown in Table 4.6, seasonally 

determined MAP parameter sets (s-MAPs) improved the representation of the mean diurnal 

NEE course compared to the reference with CLM default parameters for all evaluation sites, 

and most of them substantially. In terms of the evaluation in time, the relative reduction of 

MADdiur with s-MAPs, i.e. the improvement  in comparison to MADdiur_Ref, was 16% for 

C3-crop to 66% for C3-grass. In terms of the evaluation in space, MADdiur was reduced by 19% 

(C3-grass) to 35% (deciduous forest). For most sites, the diurnal cycles of the evaluation periods 

were better represented with s-MAPs than with 1y-MAPs. With 1y-MAPs, MADdiur were 

reduced by 12% (DE-Tha) to 45% (RO) for all PFTs except C3-crop, indicating that the diurnal 

NEE cycles for those sites were in better correspondence with observations compared to default 

parameters.  

Table 4.6: Mean absolute difference MADdiur [ mol m-2 s-1] for eight evaluation sites, averaged over all four 
seasons of the evaluation year. 

As indicated by MADann, also the annual NEE cycles were best represented by s-MAPs (Table 

4.7). However, the differences between MADann_1y and MADann_s were minor for the sites 
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DE-Gri, DE-Tha, FR-Fon and DE-Hai. s-MAPs reduced MADann by 6% (DE-Gri) to 49% (WÜ) 

compared to the reference run with default parameters. The improvement of the mean annual 

NEE cycle with 1y-MAPs was 21% (RO) to 40% (WÜ). For DE-Gri, ME and DE-Kli, MADann 

was only reduced with s-MAPs, not with 1y-MAPs.  

Table 4.7: Mean absolute NEE difference MADann [ mol m-2 s-1] for eight evaluation sites and the evaluation 
year.  

 

Table 4.8 summarizes RMSEm and RD NEE including the upper and lower 95% confidence 

intervals obtained from the posterior pdfs. RD NEE was most substantially reduced for DE-Kli 

with s-MAPs -Kli was ~82 gC m-2 y-1. T

-104 gC m-2 y-1 for CLM-Ref and 78-130 gC m-2 y-1 with season-based parameter estimates. For 

RO, RD NEE was significantly reduced with 1y-MAPs and s-MAPs from 66% (CLM-Ref) to 

5% and 17%. Also for DE-Gri, RD NEE was significantly reduced with the one-year based 

estimates (by 19-25%), but not with the season-based estimates. For the forest PFTs, the indices 

differed only minor between 1y- and s-MAPs. The reduction of RD NEE was 22% (WÜ)  49% 

(DE-Hai) with s-MAPs and 23% (FR-Fon)  38% (DE-Hai) with 1y-MAPs. However, for 

coniferous forest, the improved representation of NEE was only significant with 1y-estimates 

due to the high uncertainty of the simulated NEE sum with season-based parameter estimates. 

This is also indicated by the simulated annual NEE sums (Figure 4.13) and the diurnal NEE 

cycles, which exhibit a higher spread with season-based parameter estimates, especially for WÜ 

and DE-Tha in winter and spring. In contrast to  calculated for the model evaluation, the 

NEE time series used to calculate the annual NEE sums in Figure 4.13 were not filtered 

according to available observations.  

Figure 4.13 illustrates the effect of the jointly estimated parameter values on the annual NEE 

sum of the evaluation period. For all forest evaluation sites, parameter estimates would result 
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in a strong increase of the carbon sink function. For forest, the NEE calculated with estimated 

parameters was significantly more in correspondence with observations than NEE calculated 

with global default parameters. This highlights the strong impact parameter estimates can have 

on predictions of climate-ecosystem feedbacks and simulated carbon pools.  

 

Table 4.8: RMSEm and RD NEE [%] for the evaluation year and on the basis of half hourly NEE data. Results 
are given for the evaluation sites RO, WÜ, ME and FR-Fon (left), and DE-Gri, DE-Tha, DE-Gri and 
DE-Hai (right) 

 

 

 

 

 

 

 

 

 

In terms of the jointly estimated parameters and initial state multiplication factors dCN and 

lCN, we found that 1yIS estimates significantly improved the representation of simulated NEE 

(RD NEE, MADann) for FR-Fon in comparison to the reference. For this site, CLM-1yIS clearly 

outperformed the equivalent simulations without initial state estimates (CLM-1y) as well as the 

season-based estimates. Also for ME and WÜ, the model performance was slightly better for 

CLM-1yIS in comparison to CLM-1y, but not significantly. For WÜ, the uncertainty of the 

predicted NEE sum increased considerably if initial states were jointly estimated with the eight 

parameters (Figure 4.13). 1yIS estimates did not outperform the CLM default parameters for 

ME. For RO, CLM-1y clearly outperformed CLM-1yIS.  
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Figure 4.13: Annual NEE sum in the evaluation year simulated with CLM and parameters estimated for the 
one year period without and with two initial state factors (CLM_1y, CLM_1yIS) and separately 
for four different seasons (CLM_s), in comparison to the reference run with default parameters 
(CLM_Ref).  

Overall, evaluation results indicate that parameter estimates for the forest PFTs were best 

transferable both in time and in space. 1y-based and seasonal parameter estimates performed 

similarly well for forest and also 1yIS estimates considerably reduced the model-data mismatch 

in comparison to the reference. In this respect, parameters for the forest PFTs were found 

suitable to be estimated jointly with the initial CN pools, whereas this was not the case for C3-

grass and C3-crop. For C3-crop, only season-based parameters provided NEE outputs that 

corresponded notably better with the observed data than the reference. For C3-grass, MADdiur, 

MADann and RMSEm were lower with s-MAPs than with 1y-MAPs, but NEE was best 

represented with the 1y-based parameter estimates. For all PFTs, the uncertainty of the 

estimated parameters and the corresponding NEE model output was very low (and probably 

underestimated) for the 1y-based estimates and notably higher for the season-based parameter 

estimates. 
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4.4. DISCUSSION 

4.4.1. Plausibility of estimated parameter values and possible impact on predicted 

climate-ecosystem feedbacks 

Previous studies showed that ecological parameters like Vcmax25, mrb and Q10 vary in time, which 

can be related to variations in environmental conditions such as mean annual temperature or 

soil moisture (Kätterer et al., 1998; Flanagan and Johnson, 2005; Mo et al., 2008; Reichstein et 

al., 2005). Our results support those findings. For all sites except WÜ, estimates of the eight 

CLM4.5 parameters varied notably among the four different seasons. For example, slatop was 

highest in autumn and winter and lowest in spring and summer in case of ME. The specific leaf 

area varies with the development stage of the plant and decreases linear with life span, along 

with leaf nitrogen (e.g. Chapin III et al., 2002, p.111). In CLM, slatop determines both Vcmax25 

(Eq.2.4) and LAI. Since winter wheat is seeded in early autumn and usually starts growing in 

this season, the direction of seasonal course of slatop for ME is plausible. Our results are also in 

correspondence with Curiel Yuste et al., (2004), who found that Q10 is strongly influenced by 

the deciduousness of the vegetation and thus varies seasonally for mixed temperate forest.  

Neverthe

measurable parameter variations in all cases. For example, despite that fact that the rooting 

distribution (rb) may change slightly throughout the year, the high degree of change as for C3-

grass and C3-crop (RO and ME), is not considered reasonable. The strong seasonal variations 

of estimated rb may be related to the fact that rb is used to calculate the effective root fraction 

which determines the root water uptake (Oleson et al., 2013). The effective root fraction is not 

only dependent on the degree of stomata conductance, but also dependent on the matrix 

potential, the soil porosity and the water content in each soil layer. Thus, these parameters are 

closely linked to soil hydrology and differences in the uncertainty of rb and c may be related 

to differences in soil moisture (e.g. higher sensitivity during dry conditions). We assume that in 

case of CLM4.5BGC, the seasonal variations of the estimated parameters were strongly related 

to (i) a dependency of the parameters on meteorological variables like temperature and model 

states such as soil moisture, and (ii) a dependency of those parameters on the initial model states 

as discussed below. 

Since NEE includes GPP and ER, and ER is composed of heterotrophic and autotrophic 

respiration, compensation effects in terms of the estimated parameter values are likely. 

Therefore, the single carbon fluxes that contribute to NEE were not necessarily improved by 
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itself in all cases, even if the model-data mismatch for NEE was reduced. This is also linked to 

the finding that seasonal estimates outperformed 1y-based estimates. For example, during 

winter, the relative contribution of heterotrophic respiration to the NEE signal is higher than in 

summer, when NEE is much more determined by GPP. Therefore, parameters determining 

heterotrophic respiration like Q10 were better constrained in winter than parameters like slatop, 

which mainly determine GPP and thus were better constrained in spring and summer.  

We found that estimated parameters like Q10 were often close to the predefined minimum or 

-

correspondence with results by Braswell et al. (2005) who estimated SIPNET parameters with 

a MCMC method based on NEE data for the Harvard forest site. Also Santaren et al. (2007) 

- arameters when using a gradient-based model-data fusion approach to 

constrain ORCHIDEE parameters for a pine forest with EC data and state that this is an indicator 

for model-structural deficits. In correspondence with that, we assume the tendency of CLM 

parameters to be estimated towards their upper or lower bounds indicates that estimated 

parameters compensated for model errors such as missing key processes (e.g. senescence and 

management in case of winter wheat) or erroneous magnitudes of the initial carbon-nitrogen 

pools. Moreover, we emphasize that the estimated CLM parameters are not purely physical. 

Instead, they were e.g. developed based on empirical data obtained under specific conditions, 

like a temperature range of 20°C to 35°C in case of bs (Ball et al., 1987), using e.g. (multi)linear 

regression analysis. Therefore, they underlay simplified concepts to represent plant physiology.  

Despite the fact that the seasonal variations of parameter values are probably overestimated for 

most of the parameters, we found that estimated parameter values are often plausible and more 

in correspondence with literature values than the CLM default values. For example, different 

field studies provide common average Q10 values: Flanagan and Johnson (2005) e.g. showed 

that Q10 takes values of ~2 ± 0.8 for northern temperate grassland sites. Kätterer et al. (1998) 

summarized in a review Q10 values of ~2 ± 0.5 for different agricultural sites. Rey et al. (2008) 

found Q10 values between 2.5 and 3.3 for most of the investigated European broadleaf and 

deciduous forest sites, including DE-THA (~2.9) and DE-HAI (~2.6). They also highlight that 

Q10 also varies for different soil layers and respective soil properties. Season-based parameter 

estimates (autumn and winter only) and 1y-based parameter values are more in correspondence 

with these field-based estimates than the CLM default value of 1.5.  

But how would an increased Q10 affect predicted carbon stocks and fluxes and climate-

ecosystem feedbacks? CLM4.5 defines a reference temperature of 20°C for maintenance 
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respiration and 25°C for decomposition and heterotrophic respiration. If low Q10 values are 

applied and the actual temperature is below the reference temperature, respiration rates are 

higher and less sensitive towards temperature compared to high Q10 values. Above the reference 

temperature, respiration is more sensitive to temperature and overall higher with higher Q10 

values (illustrated in Figure 4.14). In most parts of central Europe, temperatures below 20°C 

predominate throughout the year. This implies that respiration rates are mostly higher for lower 

Q10 values and less sensitive to temperature. The suggested increase of Q10 would thus have 

two major effects on the LSM carbon cycle: (i) Nutrients would be slower released and available 

to plants. Thus, along with decreased respiration rates, simulated GPP decreases, which was 

also indicated in a sensitivity analysis for Q10 (Figure 4.15). This has a compensating effect on 

the relative change of NEE. (ii) The predicted increase of land carbon stocks is considerably 

higher. This would have a particularly large impact if the higher Q10 is already applied in the 

model spin-up and may strongly affect predicted climate-ecosystem feedbacks. 

 

 

Figure 4.14: Temperature scalar for the calculation of heterotrophic respiration in CLM, for a reference 
Temperature of 25°C and different Q10 values.  
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Figure 4.15: Sensitivity of CLM4.5BGC carbon flux simulation to the Q10 parameter for the coniferous forest 

site Wüstebach.   

 

Among-parameter correlations changed when parameters were estimated jointly with the two 

initial state multiplication factors lCN and dCN (Figure 4.3 and Figure 4.4). This is related to 

the finding that some of the estimated parameter values differed significantly, depending on 

whether or not they were estimated jointly with lCN and dCN. For FR-Fon, the correlation of 

lCN and flNR (or slatop) was low, but high for dCN. GPP is expected to be directly determined 

by the size of the living CN pools rather than the size of the dead CN pools. However, living 

and dead CN pools are strongly linked in CLM. For example, the biogeochemical cycling 

includes competition for nitrogen between plants and decomposers. Accordingly, an increase 

of the CN content in the dead pools results in a larger amount of nitrogen released during 

decomposition, which is then present to fulfill the nutrient demands of the plants. This is linked 

to the finding that not only ER but also GPP was highly sensitive to Q10 (Figure 4.15). In this 

regard, also Q10 correlated strongly with bs, which mainly determines GPP. In case of ME, Q10 

correlated with slatop which again correlated very strongly with flNR. Both flNR and slatop 

correlated very strongly with lCN. This highlights complex interactions among the estimated 

parameters and initial CN pools. The parameters flNR and slatop determine Vcmax25. In CLM, 

Vcmax25 is directly related to the LAI-based upscaling of leaf scale photosynthesis to ecosystem 
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scale GPP. This explains the correlation of flNR, slatop and lCN. Thus, probably compensation 

effects occur between parameters and between parameters and the initial state factors.  

The strong dependency of the estimated parameters on the initial carbon- and nitrogen pools 

highlights how critical the model spin-up is for the prediction of carbon fluxes. This is linked 

to the results by Carvalhais et al.(2008) showing that CASA model parameters such as 

radiation-use efficiency are strongly affected by model initial states and that relaxing the carbon 

cycle steady state assumption can improve parameter inversion and model performance. In 

general, the steady state assumption is very critical, particularly for crop sites such as ME that 

have been managed extensively for many centuries. Therefore, the initial states generated via 

the model spin-up do not represent the true state of the ecosystem, which is a well-known 

problem. More realistic initial states may be obtained from transient simulations, which 

considers the historical land cover change. However, often it is not possible to obtain the 

respective information and input data required to perform this kind of simulation adequately.  

4.4.2. CLM performance with estimated parameters 

By tendency, season-based parameter estimates outperformed one-year based parameter 

estimates. Mo et al., (2008) showed that considering seasonal variations of parameters such as 

bs and Vcmax25 during model-data fusion and modeling instead of assuming static parameters can 

enhance the final results. However, the number of degrees of freedom is multiplied by four in 

case of the seasonal parameter estimation and thus the comparability of performance of seasonal 

and one-year based parameters is somewhat limited. Nevertheless, since both seasonal and 

yearly parameter estimates were evaluated for an independent period, the evaluation approach 

used herein is considered appropriate. A more formal evaluation could be made on the basis of 

for example the Akaike information criterion (AIC). 

The uncertainty of the estimated parameters and the corresponding spread of simulated NEE 

were higher for the season-based estimates compared to the 1y-based estimates. The latter 

probably underestimated parameter and model uncertainty. An underestimation may partly be 

related to the likelihood function used herein (Equation 2.11), which does not consider 

heteroscedastic measurement error and may have underestimated the measurement uncertainty. 

As shown in various studies (e.g. Post et al., 2015; Richardson et al., 2006), the measurement 

uncertainty of eddy covariance NEE data increases with the flux magnitude. In terms of the 

model uncertainty, a realistic estimate can only be obtained if additional sources of model 

uncertainty are taken into account, including initial states and atmospheric forcings. 
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For C3-crop, one-year based parameter estimates were not well transferable in time and in 

space. We think this is related to the fact that simulated NEE was already strongly flawed in the 

reference run for this PFT, particularly with respect to errors in the timing of simulated plant 

onset and offset. The deficits of various LSMs in representing plant phenology and inter-annual 

variations in carbon cycling have been highlighted in previous studies (Braswell et al., 2005; 

Keenan et al., 2012a; Richardson et al., 2012; Melaas et al., 2013) and can significantly alter 

the simulated annual net productivity (e.g. Hollinger et al., 2004; Richardson et al., 2009). We 

assume the major reasons for the deviations of simulated and measured NEE for C3-crop are 

(i) missing or poorly represented key processes including management and senescence, and (ii) 

initial conditions that do not represent the true state of the ecosystem for those sites. Senescence 

as observed at the ME site end of July was related to an abrupt shift from NEE overestimation 

to a strong NEE underestimation. Such a model-data discrepancy is impossible to correct or 

compensate with one-year based parameter estimates, but was obviously partly compensated 

by the season-based parameter estimates. On the other hand, the ME site is subject to 

management (seeding, fertilization, harvest, etc.), which in CLM4.5 was not implemented and 

drivers of the carbon cycle are missing. Besides, initial carbon-nitrogen pools are probably 

highly flawed, since the site has been managed since many centuries. Thus, the steady state is 

not true. A better process representation including site management is important before being 

able to successfully estimate robust parameters for C3-crops. This seems obvious, is however 

highlighted here, given that LSMs like CLM are commonly applied to simulate land surface 

fluxes on continental to global scales, using global default parameters defined for those very 

broad PFT-groups. However, crops are highly divers in terms of both species grown and 

management practices applied. Accordingly, previous studies showed that crop parameters are 

critical to transfer to other sites (Sus et al., 2013) or different resolutions (Iizumi et al., 2014).  

Different studies outlined an intra-PFT variability of parameters, which can hinder parameter 

transferability to other sites (Groenendijk et al., 2011; Xiao et al., 2011; Kuppel et al., 2012). 

Parameters estimated for a single EC site cannot generally be transferred to other sites of the 

same group of PFTs, as the estimated parameters are sometimes overly tuned to site-specific 

conditions (Kuppel et al., 2012). Nevertheless, we showed that in most cases, parameter 

estimates significantly improved modeled NEE at the evaluation sites in more than 600 km 

distance to the parameter estimation sites. This indicates that transferability was given, although 

environmental conditions and plant-characteristics were presumably different at those sites. 

Also for the C3-crop evaluation site DE-Kli, season-based parameter estimates significantly 
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reduced the model-data mismatch. This is probably related to the fact that here also winter 

temperate cereals were grown. Accordingly, we assume that the transferability of LSM 

parameters strongly depends on the representativeness of one particular site, e.g. in terms of site 

management or plant species. Generalized statements in this respect are difficult. Results 

showed that also for C3-grass, parameter estimates did improve simulated NEE at evaluation 

site DE-Gri, but not as strongly and clearly as for the forest PFTs. Thus, the RO site is probably 

not representative for DE-Gri, which may be related to different environmental conditions and 

plant properties at both sites. The finding that parameter estimation was more successful for the 

forest sites compared to C3-crop and C3-grass is in correspondence with findings by Kuppel et 

al. (2014), who applied ORCHIDEE and a gradient-based data assimilation approach.  

In case of RO, the notably better performance with both s-MAPs and 1y-MAPs compared to 

the reference was mainly related to the fact that simulated plant onset in spring was shifted 

ahead, and thus daytime NEE (GPP), was much less underestimated in this period. The finding 

that estimated parameters had an impact on the simulated plant onset is probably due to model 

internal links with variables or parameters in the stress-deciduous phenology scheme of 

CLM4.5, which determines the active growing season for C3-grasses and C3-crops. Estimated 

parameters affect not only the simulated carbon-nitrogen pools but also other states like soil 

moisture. This again can affect the simulated onset and/or offset.  

4.5. CONCLUSIONS 

In this work, eight sensitive parameters and two multiplication factors for the initial carbon- 

and nitrogen- pools of the Community Land Model v. 4.5 were estimated for four sites in 

Germany and France. Parameters were constrained with measured NEE-data using the Markov 

Chain Monte Carlo method DREAM(zs). Parameter estimates were evaluated for a subsequent 

year at the same sites, as well as for evaluation sites with corresponding PFTs, separated ~ 600 

km from the estimation sites.  

DREAM(zs)-CLM parameter estimates successfully reduced NEE model-data discrepancies, 

e.g. in terms of obtaining more reliably estimates of annual NEE sums. By tendency, season-

based parameter estimates outperformed parameters that were estimated based on the complete 

one-year set of NEE data. This suggests that taking into account seasonal variations of the 

estimated parameters can improve the representation of simulated NEE in CLM.  
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The validation of the estimated parameters was most successful for the forest PFTs, because the 

NEE model-data mismatch was substantially reduced for all sites, both with one-year and 

season-based estimates. We also showed that for coniferous forest, differences of the parameter 

values estimated with or without initial states were considerably lower compared to the other 

sites. We therefore conclude that CLM4.5 parameter estimates for evergreen needleleaf forest 

and broadleaf deciduous forest were best transferable and most reliable.  

For C3-crop, parameter estimation was least successful. This is probably related to missing key 

processes and drivers like senescence and management, which caused major systematic model-

data discrepancies. Nevertheless, we showed these discrepancies were partly compensated by 

season-based parameter estimates, which significantly improved simulated NEE also for the 

evaluation site. Accordingly, we assume that the evaluation sites were affected by similar errors 

in model structure and initial conditions as the parameter estimation sites.  

This study revealed strong correlations between some of the estimated CLM4.5 parameters and 

the initial carbon-nitrogen pools. This elucidates a high level of model complexity and the 

challenge to estimate or optimize CLM parameters, which depend on the initial model states. 

This has major drawbacks in terms of transferring site-based parameter estimates to other sites 

or larger scales. Because complex land surface models like CLM include hundreds of 

parameters in order to simulate the coupled carbon-, nitrogen-, water- and energy- cycles, over-

parameterization is a common problem in those models. In order to better constrain LSMs and 

eventually reduce among-parameter correlations, we consider an extension of measurements at 

EC-sites, including e.g. rooting depths and densities, leaf area indices and leaf C:N ratios at EC 

sites important. 

Moreover, we conclude that goodness-of-fit indices like the RMSE by itself are not sufficient 

to evaluate the representation of modeled NEE. The model reproduction of the diurnal and 

annual NEE cycles deserves a critical evaluation as well.  
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Chapter 5: Upscaling of net carbon fluxes from the 

plot scale to the catchment scale: 

evaluation with NEE and LAI data 

*adapted from: Post, H., Hendricks Franssen, H.-J., Han, X., Hoar, T., Baatz, R., Montzka, C., Schmidt, M., 
Vereecken, H., 2016. Upscaling of net carbon fluxes from the plot scale to the catchment scale: evaluation 
with NEE and LAI data (under review for Biogeosciences). 

 

5.1. INTRODUCTION 

Eddy covariance measurements of net ecosystem exchange (NEE) fluxes are limited to a 

relatively small area. Chen et al. (2012) showed that the 90% cumulative annual footprint area 

of 12 eddy covariance (EC) towers located at Canadian sites (with different land cover including 

grassland and forest) varied from about 1.1 km2 to 5.0 km2, and that the spatial 

representativeness of the EC flux measurements depends on the degree of the land surface 

heterogeneity (Chen et al., 2012). Due to the spatial heterogeneity of soil properties, vegetation, 

and fauna, and the temporal variability of the environmental drivers (e.g. meteorological 

conditions), biogeochemical fluxes are spatially and temporally highly variable and nonlinear 

(Chen et al., 2009; Stoy et al., 2009). Therefore, conventional interpolation methods are not 

suited to upscale EC carbon flux measurements to larger areas. The understanding of factors 

controlling this spatial and temporal variability of carbon fluxes like respiration is still very 

limited (Reichstein and Beer, 2008). Hence, obtaining spatial patterns of carbon stocks and 

fluxes is highly desired.  

The two central approaches to obtain spatially distributed carbon flux estimates for larger areas 

are either (i) inverse atmospheric modeling approaches (Deng et al., 2007; Peters et al., 2007; 

Peylin et al., 2013; Chevallier et al., 2014), or (ii) the application of terrestrial ecosystem models 

or land surface models (LSMs) such as the Community Land Model CLM (Oleson et al., 2013). 

In case of inverse atmospheric modeling, atmospheric transport models are combined with 

observed atmospheric CO2 concentrations, using data assimilation methods such as the 

Ensemble Kalman Filter (e.g. Peters et al., 2007; Tolk et al., 2011). Inverse atmospheric 

modeling mainly provides carbon flux estimates at continental or global scales and coarse 

spatial resolutions (Deng et al., 2007), as flux estimates at regional scales are highly biased 
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(Tolk et al., 2011; Chevallier et al., 2014) -

 

Commonly, LSMs are applied at global or continental scales (e.g. Stöckli et al., 2008; Bonan et 

al., 2011; Lawrence et al., 2012) with grid sizes of ~ 0.25°- 1.5°. With such a high degree of 

spatial aggregation, the error of both the model input and output can be very high. Moreover, a 

reliable calibration and validation of global LSMs is difficult, because observed data including 

soil carbon stocks and EC fluxes are only available for single locations. When applying a LSM 

for a small region or catchment with a high spatial resolution (e.g. 1 km2, as in this study) the 

error of simulated fluxes is expected to be smaller due to the lower degree of spatial aggregation 

(Anderson et al., 2003). Besides, the land cover within a 1 km2 grid cell more likely matches 

with the land cover at the eddy covariance site, which enables a grid-based evaluation of 

modeled NEE. A high spatial resolution can better represent the land surface heterogeneity and 

regional weather variability than a coarse spatial resolution. Thus, regional or catchment scale 

applications of LSMs allow for investigating spatial patterns of model states, biogeochemical 

fluxes and interactions with the regional climate and catchment hydrology. Accordingly, 

quantification of carbon fluxes at regional scales can enhance the understanding of CO2 

dynamics and their drivers (Desai et al., 2008). This has been shown in various studies e.g. for 

West Africa (Bonan et al., 2002; Li et al., 2007) and the Alaskan Arctic (Fisher et al., 2014). 

However, to our knowledge, studies like Xiao et al. (2011) who optimized a simple ecosystem 

model to upscale measured EC carbon fluxes to the regional scale do not exist yet for more 

complex LSMs like CLM. This is because (i) high resolution input data is often not available, 

(ii) the implementation of a new model set-up to a specific region is relatively time consuming, 

and (iii) careful parameter estimation is required to allow for meaningful predictions.  

The Rur catchment in western Germany, subject of study in this paper, is expected to experience 

increased mean annual temperatures with a decrease of the number of freezing days in the 

future. Associated with climate change, vegetation periods are expected to start earlier and to 

prolong longer (Regionaler Klimaatlas Deutschland, 2015). In order to support the development 

of climate change mitigation and adaptation strategies and the decision making in land and 

water management, reliable carbon flux predictions with accurate uncertainty estimates are 

essential. However, LSM predictions of carbon, water and energy fluxes are still subject to a 

high degree of uncertainty due to (i) model structural deficits related to an imperfect and 

incomplete model representation of the biogeochemical processes (Todd-Brown et al., 2012; 

Foereid et al., 2014), (ii) poorly constrained model parameters (Abramowitz et al., 2008; Beven 

and Freer, 2001; Todd-Brown et al., 2013), (iii) errors in the representation of initial model 
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conditions generated via a spin-up (Carvalhais et al., 2010; Kuppel et al., 2012), as well as (iv) 

errors in both atmospheric and land surface input data. Some studies estimate the uncertainty 

of terrestrial carbon flux predictions based on an ensemble or comparisons of many different 

LSMs (e.g. Huntzinger et al., 2012; Piao et al., 2013; Fisher et al., 2014). Those studies highlight 

that (i) carbon flux predictions are generally highly uncertain, which also contributes to the 

uncertainty in climate change predictions, (ii) interactions of the different processes and drivers 

is not understood satisfactorily, and (iii) models require structural improvement to produce 

more consistent predictions. In order to improve LSM model structure and thus model-data and 

inter-model consistency, a more comprehensive understanding of model functionality and the 

contribution and link of the different model error sources is required. However, as highlighted 

by Xiao et al. (2014), the uncertainty of carbon fluxes obtained by ecosystem models has largely 

been overlooked, particularly in regional scale studies. The same is true for land surface models. 

To our knowledge, no study has been published yet, where the uncertainty of CLM carbon flux 

predictions has been comprehensively studied and estimated.  

In this study, CLM version 4.5 in the biogeochemistry (BGC) mode (CLM4.5BGC) was used, 

which simulates the coupled terrestrial carbon, nitrogen, water and energy cycles, and 

prognostically predicts the leaf area index (LAI). The LAI determines photosynthesis and 

transpiration and is a key state variable for land surface-atmosphere exchange fluxes of water 

and carbon. It is also a major indicator for the model representation of plant phenology. A 

flawed representation of plant phenology in LSMs can cause large errors in carbon flux and 

carbon stock estimates (Baldocchi and Wilson, 2001; Richardson et al., 2012). Thus, a correct 

representation of the simulated LAI in terms of magnitude and timing is highly desirable.  

Against this background, the first objective of this study was to test whether plant functional 

type (PFT)-specific parameters, estimated with the DiffeRential Evolution Adaptive Metropolis 

DREAM (Laloy and Vrugt, 2012; Ter Braak and Vrugt, 2008; Vrugt, 2016) can improve 

regional scale CLM4.5BGC predictions of both NEE and LAI. Therefore, five PFT-specific 

parameters were estimated separately for each of the four main PFTs in the Rur catchment, 

using single site eddy covariance NEE data, according to Chapter 4. The four PFTs were C3-

grass, C3-crop, temperate evergreen needleleaf forest (short: coniferous forest) and temperate 

broadleaf deciduous forest (short: deciduous forest). We evaluated model performance using 

LAI data derived from remotely sensed RapidEye data and NEE data from seven grid cells of 

the catchment domain where EC towers were located. We assumed a positive evaluation 

indicates that parameter estimates improve NEE predictions for most grid cells in the Rur 

catchment that are dominated by those PFTs. The second main objective was to 
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comprehensively estimate the uncertainty of the simulated LAI and NEE, considering the 

uncertainty in initial model states and atmospheric forcings in addition to the parameter 

uncertainty. 

5.2. MATERIALS AND METHODS 

5.2.1. The Rur catchment  

The Rur catchment (Figure 5.1) is located in the Belgian-Dutch-German border region and 

covers an area of 2354 km2. It is characterized by two distinctly different areas of land use and 

climate. In the northern lowland part, precipitation amounts are lower (650-850 mm/a), and 

potential evapotranspiration is higher (580-600 mm/a) compared to the mountainous Eifel 

region in the south where annual precipitation is 850-1300 mm/a and potential 

evapotranspiration is 450-550 mm/a (Montzka et al., 2008a, 2008b). The annual mean 

temperature in the catchment ranges from about 7.5°C in the south of the catchment to about 

10.3°C in the north (Baatz et al., 2014). The northern part is dominated by fertile loess soils and 

is intensely used for agriculture. Sugar beet and cereals (winter wheat, barley) are the most 

cultivated crops in the catchment (Figure 5.1). In the mountainous southern part shallow, less 

fertile soils predominate. It is mainly covered by meadows and forests. The Rur catchment is 

one of four central research regions of the TERENO project (Zacharias et al., 2011; Hohlfeld et 

al., 2012), which has the main goal to determine global change impacts across different 

terrestrial compartments at the regional level. Therefore, comprehensive input and evaluation 

data is available for the catchment, including information on land use (Lussem and Waldhoff, 

2013), leaf area indices (Ali et al., 2015) and eddy covariance data (Schmidt et al., 2012; Graf 

et al., 2014; Post et al., 2015).  

Eddy covariance (EC) data in the Rur catchment were measured at seven sites of different land 

use. Rollesbroich (RO) and Kall Sistig (KA) are extensively used grassland sites (Chapter 3.2) 

Perennial ryegrass (lolium perenne) and smooth meadow grass (poa pratensis) are main grass 

species grown in Rollesbroich (Korres et al., 2010). Wüstebach (Graf et al., 2014) is located in 

the Eifel national park and is largely covered by evergreen coniferous forest, particularly 

spruces. The crop sites Merzenhausen (ME), Niederzier (NZ), Selhausen (SEL), and 

Engelskirchen (EN) are located in the northern lowland region of the catchment. 
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Figure 5.1: Land cover (Waldhoff, 2010) and eddy covariance tower sites in the Rur catchment. 

5.2.1.1. Eddy covariance data 

In ME and SE winter wheat was grown during the measurement period, in EN and NZ sugar 

beet. Four of the seven EC towers (RO, ME, SE and WÜ) were permanently installed. For those 

sites EC data were available for more than one year. EC data at the other sites (KA, EN and 

NZ) were measured by a roving station, which was installed two to three months at each of the 

three sites (Table 5.1). 

The WÜ eddy covariance data were processed with the software ECpack (Dijk et al., 2004) 

using additional post-processing according to Graf et al. (2014). For the other sites, the complete 

processing of the raw data was performed with the TK3.1 software (Mauder and Foken, 2011), 

also using the quality flagging and uncertainty estimation scheme by Mauder et al., 2013 as 

outlined in Chapter 3.3.1 and Chapter 3.3.6 respectively. Accordingly, the instrumental noise 

 and the stochastic error  determined according to Mauder et al. (2013) were added 

(in quadrature) to determine the uncertainty or random error of the NEE data. Only non-gap 
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filled data with quality flag 0 (high quality data) and 1 (moderate quality data) were included 

in this study.  

Table 5.1: Eddy covariance tower sites in the Rur catchment. 

5.2.1.2. RapidEye-based leaf area index 

RapidEye is a commercial satellite mission initiated by the RapidEye AG (Tyc et al., 2005) and 

consists of five identical satellites, which were launched in August 2008. RapidEye provides 

multi-spectral images of five spectral bands (blue, green, red, red edge and near infra-red). The 

nominal temporal resolution is daily. The ground sampling distance is 6.5 m and the pixel size 

is 5m for the orthorectified Level 3A data used here. The LAI data derived from satellite images 

are determined based on the NDVI (Normalized Difference Vegetation Index), which is related 

to the chlorophyll content in leaves. The NDVI is calculated based on the reflectances at near 

infra-red (NIR) and (RED). NDVI-based LAI data (LAINDVI) are affected by various error 

sources, which can result in a high uncertainty of the LAI estimate. The major error sources are 

summarized in Garrigues et al. (2008), such as (i) uncertainties in surface reflectance 

measurements resulting e.g. from calibration errors or cloud contamination, or (ii) deficiencies 

in the representation of canopy architecture in the algorithms applied for the LAI retrieval, e.g. 

the negligence of foliage clumping. This can lead to a high underestimation of actual LAI, 

especially for needleleaf forests (Chen et al., 1997). Clumping effects on landscape scale are 

also related to the fact that LAI algorithms have been calibrated at the plot scale, but are applied 

over larger heterogeneous pixels, which can induce substantial scaling biases on the LAI 

estimates (Garrigues et al., 2006). The latter error source is assumed relatively small for the 

LAI retrieval from RapidEye due to the high spatial resolution (5m) of the images. Studies on 

verification or uncertainty quantification of LAI data derived from satellite images are very rare 
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(Garrigues et al., 2008), but very important for land surface model applications. Ali et al. (2015) 

used orthorectified and radiometrically corrected Level 3A data (Blackbridge, 2015) to generate 

5 m resolution LAI data for the Rur catchment, with the same methodology previously applied 

to MODIS data (e.g. Propastin and Erasmi, 2010). Those LAI data were validated for two crop 

sites (Merzenhausen and Selhausen) in the Rur catchment using in situ data measured with a 

destructive, ground-based method (Bréda, 2003) at several equally distributed points within the 

fields at six and eleven days during the growing season. The results indicate a high consistency 

between in situ measured LAI and LAINDVI derived from RapidEye (Ali et al., 2015). Because 

only the two crop sites were included in this evaluation approach, the LAI data for crop sites 

(winter wheat) are considered most reliable.  

For this study, the LAINDVI data for the Rur catchment obtained according to Ali et al. (2015) 

were aggregated from the 5m2 to the 1km2 grid of the CLM Rur catchment domain by 

arithmetically averaging (LAIRapidEye). 

5.2.2. Community Land Model set-up 

In this study, the Community Land Model (CLM) version 4.5 (Oleson et al., 2013) with the 

active biogeochemistry model (CLM4.5BGC) was used, which is described in Chapter 2.2. 

Accordingly, in the following CLM refers to CLM4.5BGC. To apply CLM for the Rur 

catchment domain, a land surface input dataset was generated with a spatial resolution of 1km2. 

The land unit for each grid cell and the PFT distribution of each vegetated land unit were defined 

based on the land use classification derived from supervised, multi-temporal remote sensing 

data analysis using RapidEye and ASTER data (Waldhoff et al., 2012; Lussem and Waldhoff, 

2013). The percentage PFT coverage of the vegetated land in Rur catchment was ~34% C3-

crops, ~32% grassland, ~17% broadleaf deciduous forest and ~14% coniferous forest. In 

addition to the land use coverage, CLM requires information on the percentage clay and sand 

content for each of the 15 soil columns of the vegetated area per grid cell. For each soil layer, 

the soil texture was defined based on the German soil map (BK50) provided by the Geological 

Survey NRW. Mean topographic slope, mean elevation and maximum fractional saturated area 

were determined for the 1 km2 grid from a 10 m resolution digital elevation model (scilands 

GmbH, 2010). Additional land surface data required to run CLM4.5 such as soil color was 

adopted from the default CLM4.5 0.9° x 1.25° resolution global land surface data file of year 

2000 (surfdata_0.9x1.25_simyr2000_c110921.nc). 

The atmospheric forcing data used to run CLM consists of hourly time series of precipitation 

(mm/s), incoming short wave radiation (W m-2), incoming long wave radiation (W m-2), 
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atmospheric pressure (Pa), air temperature (K), specific humidity (kg/kg) and wind speed 

(mm/s) at the lowest atmospheric level. The data were obtained for the years 2008-2013 from 

the reanalysis COSMO_DE dataset provided by the German Weather Service (DWD) in 2.8 

km2 resolution (Baldauf et al., 2009). The COSMO_DE data were downscaled to 1 km2 using 

natural neighbor interpolation based on Delaunay triangulation.  

To generate the initial state variables such as the carbon and nitrogen pools, CLM was spun up 

over a period of 1200 years, using COSMO_DE data of the years 2008-2010. The model states 

obtained after the 1200-year spin-up were th -

-up mode) also using the meteorological data for the years 2008-2010.  

5.2.3. Parameter estimation with DREAM for single sites of Rur catchment domain 

In Chapter 4, eight CLM4.5BGC key ecological parameters were estimated with half-hourly 

NEE time series for four EC sites of different plant functional types. As shown in Figure 4.1, 

three of the four sites were located in the Rur catchment (RO: C3-grass, ME: C3-crop, WÜ: 

coniferous forest). The fourth temperate deciduous forest site Fontainebleau was located in 

France (FR-Fon) [48.4763 N, 2.7801 E]. The estimated parameters were validated with 

FLUXNET data from four other sites (DE-Hai, DE-Tha, DE-Kli, DE-Gri), which were located 

about 600 km away from the original parameter estimation sites. This evaluation indicated that 

parameter estimates are transferable to other years and sites.   

Following this study, we used the adaptive Markov Chain Monte Carlo (MCMC) method 

DREAM(zs) (Chapter 2.3) to estimate five key PFT-specific parameters: (1) the fraction of leaf 

N in Rubisco enzyme (flNR), (2) the growth respiration factor (gR), (3) the rooting distribution 

parameter [1 m-1] (rb), (4) the specific Leaf Area at top of canopy [m2/gC] (slatop), and (5) the 

soil water potential at full stomatal closure [mm] ( c). All parameters converged completely 

after about 3000 iterations (WÜ) to 6000 iterations (RO). We used the same DREAM(zs) set-up 

and the same data as applied by in Chapter 4 for parameter estimation, but included only the 

five PFT-specific parameters, and not the three hard-wired parameters. The three hard-wired 

parameters Q10 (temperature coefficient), mrb (base rate for maintenance respiration) and bs 

(Ball-Berry slope of conductance-photosynthesis relationship) are also important key 

parameters in terms of NEE. However, they cannot be defined separately for each PFT without 

changes of the CLM source code structure. A PFT-specific definition of those parameters is 

possible for single site simulations with one PFT only, but not for a regional application with 

different PFTs in the model domain. Given correlations among the eight parameters estimated 

(Chapter 4), adopting only the subset of the five PFT-specific parameters from the previous 
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study was no option. Thus, new sets of parameters were estimated in this study. The three hard-

wired parameters were set to Q10 = 2.5, mrb = 3.5*10-6, and bs = 6.0, which was in better 

correspondence to the maximum a posteriori (MAP)-estimates determined in Chapter 4 for the 

one year period (Table 4.5), than the CLM default values (Q10 = 1.5, mrb = 2.53*10-6, and bs = 

9.0).  

The one year NEE time series used for parameter estimation comprised twelve months between 

June 2011 and Nov. 2012, depending on the site and the respective data available (Table 5.1).  

5.2.4. Perturbation of atmospheric input data 

In order to take the uncertainty of the meteorological input data into account, a 60 member 

ensemble of perturbed meteorological forcings was generated for the years 2008-2012 using 

hourly COSMO-DE data. The approach used to generate the perturbation fields has previously 

been applied for studies on soil moisture data assimilation (Reichle et al., 2007, 2010; Kumar 

et al., 2012; Han et al., 2012, 2013, 2014). Perturbation fields were applied to air temperature 

[K], incoming long wave radiation [W/m2], incoming short wave radiation [W/m2] and 

precipitation [mm/s]. Normally distributed additive perturbations were applied to longwave 

radiation (LW) and air temperature (Temp). Log-normally distributed multiplicative 

perturbations were applied to precipitation (Prec) and shortwave radiation (SW). The 

parameters used for the perturbations were adapted from Han et al. (2014) and are listed in 

Table 5.2.  

Table 5.2: Parameters applied for the perturbation of the meteorological input data, adapted from Han et al. 
(2014). 

 

The perturbations for the different atmospheric variables (incoming short wave radiation, 

incoming long wave radiation, air temperature and precipitation) are cross-correlated in order 

to generate physically plausible perturbations of the atmospheric forcings. We considered 

spatial cross-correlation in addition to temporal correlation of the meteorological variables. The 

multiplicative perturbations are truncated by a defined maximum standard deviation of 2.5 

(standard normal distribution), to remove outliers from the generated perturbation fields 
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(Reichle et al., 2007). The spatially-correlated noise is calculated first using the Fast Fourier 

Transform approach (Park and Xu, 2013) with a 10 km spatial correlation scale. Next, the 

temporally-correlated noise is added to the spatially-correlated noise. The temporal correlation 

for all perturbed variables is imposed using a first-order AR(1) autoregressive model (Reichle 

et al., 2007). The AR(1) temporal correlation coefficient for a time lag of one day was 0.368 

for all variables. 

5.2.5. Generation of perturbed initial state input files and the perturbed forward run for 

the Rur catchment 

As shown in various studies, carbon fluxes predicted by land surface models strongly depend 

on the carbon-nitrogen pools generated during the model spin-up (Carvalhais et al., 2010; 

Kuppel et al., 2012). In order to take the uncertainty of initial states into account, a 60 member 

ensemble of perturbed initial states was generated. This was done via a 15 year spin-up using 

the perturbed atmospheric forcings for the years 2008-2010 and parameter values sampled 

randomly from the joint DREAM posterior pdfs. The initial conditions used at the beginning of 

the 15 year perturbed spin-up were the ones generated with the main spin-up (1200 years in 

spin-up mode, plus 3 years in normal mode) as described in Chapter 5.2.2. 

5.2.6. Performance evaluation measures and uncertainty estimation 

Three CLM cases were defined to evaluate the effect of the updated ecosystem parameters and 

to estimate the uncertainty of the model predictions: (i) The reference run (CLM-Ref): a single 

instance forward run for the years 2011-2013 with default parameters and the atmospheric input 

data and initial conditions as described in Chapter 5.2.2; (ii) a 60 instance forward run for the 

same time period and with the same initial conditions and atmospheric input data as CLM-Ref, 

but with parameters sampled randomly from the joint DREAM posterior pdfs (CLM-EnsP); (iii) 

a 60 instance forward run for the same period with parameters sampled according to CLM-EnsP, 

but applying both perturbed atmospheric forcings and perturbed initial states (CLM-EnsPAI). 

The case CLM-EnsPAI was set up to estimate the overall uncertainty of simulated NEE and LAI 

given that the parameters as well as the atmospheric input data and the initial model states are 

uncertain. The case CLM-EnsP was defined to allow for a direct evaluation of the updated 

parameters in comparison to CLM-Ref with global default parameters.  

5.2.6.1. Evaluation of NEE-based on eddy covariance data 

The evaluation of NEE was conducted with time series of half-hourly NEE data measured at 

seven EC tower sites within the catchment (Table 5.1). First, it was verified that the PFT 



 95 

 

Chapter 5: Upscaling of net carbon fluxes from the plot scale to 
the catchment scale: evaluation with NEE and LAI data 

coverage of one CLM grid cell coincided with the dominant PFT at the respective EC tower 

site. Each of the seven grid cells were covered more than 80% by the PFT of the respective EC 

tower site. This was considered sufficient to allow for a grid-based model evaluation. In the 

grid cell, in which one of the EC towers is 

gc  

The length of the available NEE time series differed among the seven EC sites, ranging from 

two to twelve months (including data gaps). See Table 5.1. Accordingly, only the model output 

that coincides with the observed NEE data were used. 

The calculated NEE output was evaluated based on the following indices:  

(i) The root mean square error (RMSEm):  

, (5.1) 

with  = measured half-hourly NEE [ mol m-2 s-1] at time step i for the given time series of 

length n, and  = modeled equivalent. 

(ii) The mean absolute difference of the mean diurnal NEE cycle: 

, (5.2) 

with  = average measured NEE at a given time i during the day [ mol m-2 s-1] and = modeled 

equivalent. This performance measure is evaluated half-hourly and therefore 48 times per day.  

(iii) The relative difference [%] of the NEE sum calculated for all half-hourly data 

available in the respective evaluation period: 

, (5.3) 

with  = measured NEE (non-gap filled), and  = modeled equivalent. 

For the sites RO, ME, WÜ and SE, where a complete year of NEE data was available, the mean 

diurnal NEE cycle and the index  were calculated separately for each of the four 

seasons within the evaluation year (winter: Dec.-Feb.; spring: Mar.-May; summer: Jun.-Aug.; 

autumn: Sept.-Nov.). The four seasonal indices were averaged to obtain the respective  

index for the entire evaluation year. For the other sites where only NEE data for ~ 2-3 months 

were available, the indices including  were calculated for this shorter time series. All 

evaluation indices were determined both for CLM-Ref and for the ensemble mean of CLM-

EnsP. 
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In order to compare the ensemble spread of CLM-EnsP and CLM-EnsPAI, the annual NEE sum 

NEEsum [gC m-2 y-1] was calculated for each of the 60 ensemble members, both for CLM-EnsP 

and CLM-EnsPAI. The complete half-hourly time series (without gaps) of modeled NEE data 

between the 1st of Dec. 2012 and the 30th of Nov. 2013 was used to calculate NEEsum. Then, the 

standard deviation (STD) as well as the absolute difference (DiffCI90) between the upper and the 

lower boundary of the 90% confidence interval (CI90up, CI90low) for the ensemble of NEEsum 

was calculated: 

. (5.4) 

5.2.6.2. Evaluation of LAI predictions 

The effect of the parameter estimates on LAI was evaluated for the 1 km2 grid of the Rur 

catchment domain. LAI data from RapidEye (LAIRapidEye) of about 18 days (depending on the 

location) between the 1st of November 2011 and the 16th of September 2012 were used for the 

LAI evaluation. As LAIRapidEye data were available only for several days and not for all grid 

cells at all days, the simulated leaf area indices (both for CLM-EnsP and CLM-Ref) were 

subsetted according to the days and grid cells where RapidEye data were available. The LAI 

was evaluated (1) for the whole set of RapidEye data available for the Rur catchment domain 

(independent of the land cover in each grid cell), separately for the winter half year (1st Nov. 

2011  30th Apr.2012) and the summer half year (1st May  31st Oct. 2012), and (2) individually 

for each of the four main PFTs in the catchment, also separately for the winter and summer half 

year. To evaluate and compare modeled LAI for CLM-EnsP and CLM-Ref, the mean absolute 

difference between simulated LAI and measured LAI (MADLAI) was calculated: 

 (5.5) 

with  = modeled daily LAI [m2 m-2 day-1] and  = measured equivalent, ndays= number of 

days, and ngc= number of grid cells for which LAIRapidEye data were available at a particular day.  

For the PFT-specific evaluation,  was calculated according to Equation 5.5, but 

this time including a substantially smaller number of grid cells (npftgc) that were covered by >80 

% with one of the four main PFTs (coniferous forest, deciduous forest, C3-grass or C3-crop): 

  (5.6) 

The was calculated separately for each of the four main PFTs in the Rur catchment. 
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For the respective data used in Equation 5.6, the mean LAI for each PFT was calculated by: 

 (5.7) 

with ndays= number of days RapidEye data for a given PFT were available, and LAIi= LAI 

observed or modeled at a particular day [m2 m-2 day-1]. 

Each of the indices ,  and  were calculated for both, CLM-Ref, in 

-EnsP, in 

th  

5.3. RESULTS AND DISCUSSION 

5.3.1. Parameter estimates 

In this section, estimates of the five PFT-specific CLM parameters (Table 5.3) are summarized 

and compared to the corresponding parameter values estimated jointly with Q10, mrb and bs in 

the previous study (Chapter 4, Table 4.5). T  parameter estimates for the C3-crop site 

ME (all parameters) differ significantly from the one-year based estimates of the previous study. 

For C3-grass (RO), only flNR and gR differ significantly, slatop is the same, and rb and c have 

overlapping 95% confidence intervals. For deciduous forest (FR-Fon), flNR, slatop and rb differ 

significantly, whereas gR values are identical. For coniferous forest (WÜ), the estimated 

parameter values are the same or very similar and did not differ significantly from the ones in 

Table 4.5.  

Overall, differences of the herein estimated parameter values between RO and ME (Table 5.3) 

are considerably smaller than the differences shown in Table 4.5. For each of the five 

parameters, estimated values for RO were nearly identical to the corresponding MAP estimates 

for ME. We assume this is because (i) C3-grass and C3-crop calculations in CLM are governed 

by the same stress deciduous phenology scheme, and (ii) the grass species and crops grown at 

the sites RO and ME have similar PFT-specific properties e.g. in terms of plant height, LAI or 

rooting depth.  
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Table 5.3: Maximum a posteriori (MAP)-estimates of five plant functional type specific CLM 
parameters estimated with DREAM for the sites ME, RO, WÜ and FR-Fon. 

flN

5.3.2. NEE - evaluation of parameter estimates and uncertainty 

For most sites, estimated parameters improved the consistency between modeled and measured 

data in comparison with the CLM reference run with global default parameters (Table 5.4). For 

five of seven sites (RO, ME, SE, NZ and WÜ), at least two of the three evaluation indices 

(MADdiur, RMSEm, RD NEE) were improved for CLM-EnsP compared with CLM-Ref. In case 

of NZ, EN and KA, the different evaluation indices were contradictory. For all sites, either 

MADdiur or RMSEm or both were lower for CLM-EnsP than for CLM-Ref. For MEgc and SEgc, 

MADdiur and RMSEm were between 7.7% and 36.6% lower for the ensemble mean of CLM-

EnsP than for CLM-Ref. In case of WÜgc, MADdiur was 17.7% lower and RMSEm 2.9% lower 

for CLM-EnsP compared to CLM-Ref. For ROgc, MADdiur improved by 7.9 % and RMSEm by 

0.6%, again comparing the same model runs. For ENgc and KAgc, RMSEm was reduced by 0.4% 

and 3.8% with parameter estimates, but MADdiur was 7.4% and 12.3% higher. For the NZgc, 

MADdiur was 28.7% lower with updated parameters, but RMSEm was 14% higher. 

The measured NEE sum over the whole evaluation period was negative for each of the seven 

EC sites and for all of the respective model outputs. This would indicate that all sites were net 

carbon sinks during the evaluation period. However, because data gaps were included in the 

NEE time series and because more EC data were available for summer and daytime than for 

winter and nighttime, those values do not represent the true NEE sum of the evaluation period. 
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The measured NEE sums were -806 gC m-2 (SE) to -87 gC m-2 (KA). The corresponding NEE 

sums for CLM-Ref were -85 gC m-2 (WÜ) to -3 gC m-2 (NZ), indicating that overall CLM-Ref 

underestimated GPP and/or overestimated ER for all PFTs. For the ensemble mean of CLM-

EnsP, the corresponding NEE sums were -362 gC m-2 for ME to -26 gC m-2 for RO, indicating 

that by tendency GPP was less underestimated and/or ER less overestimated compared to CLM-

Ref. 

Table 5.4: Root mean square error RMSEm [ mol m-2 s-1], mean absolute difference for the mean diurnal NEE 
cycle MADdiur [ mol m-2 s-1], and relative difference of the NEE sum over the evaluation period 
RD NEE [%] for the CLM ensemble with estimated parameters (EnsP) in comparison to the 
reference run (Ref) with default parameters. 

 

The relative difference of the observed and modeled NEE sum (RD NEE , Equation 3.5) was 

very high (>79%) in case of CLM-Ref for each of the seven sites except KA (Table 5.4). With 

estimated parameters, i.e. for the ensemble mean of CLM-EnsP, RD NEE was reduced by 14% 

(SE) to 73% (ME). For the sites NZ and KA on the contrary, RD NEE was slightly (5-7%) lower 

for CLM-Ref than for CLM-EnsP. On average, RD NEE reduced by 23% with estimated 

parameters. Accordingly, the estimated parameters are assumed to provide more reliable 

estimates of the annual NEE sum for the Rur catchment han CLM-Ref with default parameters. 

Parameters estimated for FR-Fon could not be explicitly evaluated for NEE in this study, 

because no broadleaf deciduous forest EC tower site was available within the catchment. 

However, Table 4.8 in Chapter 4.3.3 showed that with DREAM-CLM parameters estimated for 

FR-Fon, RD NEE decreased by 38% for the evaluation site DE-Hai in 630 km distance to FR-

Fon, indicating that transferability of those parameters over larger distances are given. Thus, 

the new parameter estimates for FR-Fon are assumed to provide more reliable estimates of the 

annual NEE sum for broadleaf deciduous forests in the catchment than global default 

parameters. Figure 5.2 illustrates the effect the estimated parameters had on the annual NEE 

sum [gC m-2 y-1] (Dec.2012  Nov.2013) determined with CLM for the Rur catchment, in this 
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case for complete time series without data gaps. With global default parameters, NEE was 

positive for most of the grid cells, particular in the northern part of the catchment, which is 

predominated by agriculture. In terms of NEE, the catchment would then be a clear net CO2 

source during this period. With estimated parameters, NEE sum [gC m-2 y-1] became negative 

for most grid cells in the catchment, including a large part of the northern lowland area. In terms 

of NEE, the catchment would then be a net CO2 sink, disregarding CO2 fluxes due to harvesting, 

land use change and anthropogenic CO2 emissions like fossil fuel combustion. As shown in 

Figure 5.2, both GPP and ER increased with estimated parameters. GPP increased more than 

ER such that the NEE sum was lower for CLM-EnsP than for CLM-Ref.Overall, the evaluation 

indices suggested that modeled NEE was clearly improved with estimated parameters for ROgc, 

MEgc, WÜgc and SEgc. However, for KAgc, NZgc and ENgc the improvement of modeled NEE 

was less distinct. For the roving station sites NZ, KA and EN, NEE time series of only 2-3 

months were available for evaluation in contrast to the other sites, where time series of a whole 

year were available. Accordingly, evaluation results are not directly comparable between those 

sites. Chapter 4.3.3 showed that the evaluation runs with parameter estimates had a strongly 

varying performance over the year. Thus, if a complete year of NEE data had been available for 

evaluation of the roving station sites, evaluation indices for those sites would be informative. 

Results indicate that the RO site might not be very representative for other grassland sites. 

Besides, the transfer of parameters estimated for the winter wheat site ME to C3-crop sites 

where very different crop types are grown is critical. At the SE site, also winter wheat was 

grown during the evaluation period like in ME. Here, parameter estimates clearly improved the 

model performance in terms of NEE. In EN and in NZ, sugar beet was cultivated during the 

evaluation period. For those sites, the evaluation was less successful. Sugar beets have 

considerably different plant characteristics and are managed differently than winter wheat, and 

therefore a limited transferability of PFT-specific parameter estimates is likely. Several studies 

emphasized already that LSM parameters can vary within one group of PFT such that the 

transfer from single site estimates to other sites with the same PFT is not trivial (Groenendijk 

et al., 2011; Xiao et al., 2011).  
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Figure 5.2: Annual sum of net ecosystem exchange (NEE), gross primary production (GPP) and ecosystem 

respiration (ER) determined with CLM4.5BGC for the Rur catchment (Dec.2012-Nov.2013) with 

default parameters (CLM-Ref.) and with estimated parameters (CLM-Ens). 
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5.3.3. LAI - evaluation of parameter estimates and uncertainty 

The evaluation indices MADLAI (Equation 5.5) calculated for the complete set of RapidEye data 

(independent of the land cover within each grid cell) indicated that LAIRapidEye was considerably 

more in correspondence with LAI(Ens) than with LAI(Ref). In the winter half year 

MADLAI(Ref) was 1.76 and MADLAI(Ens) was 0.88. In the summer half year MADLAI(Ref) was 

2.12 and MADLAI(Ens) was 1.42. This highlights that the parameter estimates obtained from 

DREAM based on eddy covariance NEE data reduced the mean absolute difference of LAI data 

(observed versus modeled) by 50% in winter and by 33% in summer.  

Table 5.5 summarizes the PFT-specific MADLAI(PFT) indices (Equation 5.6) and the 

corresponding mean LAI values LAIPFT (Equation 5.7) obtained from CLM or RapidEye, 

indicating that the reliability of modeled LAI data differed strongly among the different PFTs 

and depending on the time of year (winter half year or summer half year). CLM-Ref 

overestimated the LAI for all PFTs and both half year periods by 30%-76% compared to 

LAIRapidEye, except for deciduous forest in winter, where LAIPFT(Obs) was 30% higher than 

LAIPFT(Ref).  

Table 5.5: Mean leaf area indices (LAIPFT), determined for the RapidEye data (Obs), the CLM ensemble with 
estimated parameters (Ens) and the CLM reference run (Ref) with default parameters, and the 
mean absolute difference (MADLAI(PFT)), for the respective grid cells and days. 

The parameter estimates notably improved the consistency of modeled and observed LAI data 

for all PFTs except broadleaf deciduous trees. For C3-crop and C3-grass, MADLAI(PFT)(Ens) 

was more than 60% lower compared to MADLAI(PFT)(Ref) for the winter half year. In summer, 

MADLAI(PFT) was reduced by 67% for C3-crop and by 17% for C3-grass with estimated 

parameters. The LAI for C3-grass and C3-crop were underestimated by Ens, compared to the 

measurements, by 24-39%, both in winter and in summer. For coniferous forest, MADLAI(PFT) 

was reduced by a factor of 1.5 in winter and by a factor of 1.7 in summer with estimated 
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parameters. In case of deciduous forest, MADLAI(PFT)(Ens) was slightly (0.1) higher than 

MADLAI(PFT)(Ref), both in the winter half year and the summer half year.  

LAIRapidEye was very low for the forest sites, and most probably underestimated the true LAI in 

summer, and, in case of coniferous forest, probably also in winter. Usually coniferous forests 

like those in the Rur catchment dominated by spruces have LAI values of about 5.5 (Asner et 

al., 2003). It is well known that LAI derived from remotely sensed images such as MODIS or 

RapidEye data is often highly underestimated for forest (e.g. Chen et al., 1997). Therefore, the 

LAI values and the evaluation indices in Table 5.5 are suspect for the forest PFTs. The observed 

LAIRapidEye data for C3-crop and C3-grass (summer half year) were lower than expected for the 

main growing season of those PFTs. This supports findings by Ali et al. (2015) showing that 

LAI from RapidEye underestimates the in situ measured LAI in the growing season. However, 

Ali et al. (2015) compared the LAI data on a daily basis. Here LAIRapidEye was averaged over 

the complete summer half year. Between beginning of Mai 2011 and end of October 2012 for 

example, the in situ measured LAI in Selhausen varied between 0 and ~4.5 (Ali et al., 2015) 

indicating that the half year average LAIPFT(Obs) values in Table 5.5 are reasonable for C3-

crop. Because C3-grass is usually not (completely) harvested in this region, it is also reasonable 

that observed LAIPFT in the summer is higher than for C3-crop.  

The close link between simulated LAI and NEE has already been reported in previous studies 

(e.g. Keenan et al., 2012). Chapter 4.3.2 showed that in CLM the parameters flNR and slatop 

correlate with the carbon-nitrogen pools and LAI, particularly for C3-grass and C3-crop. This 

is related to the fact that in CLM both LAI and NEE are strongly determined by the maximum 

rate of carboxylation at 25 °C, Vcmax25 [ mol m-2 s-1] (Equation 2.4), which is calculated based 

on slatop and flNR. This explains why the DREAM-estimates of the five PFT-specific parameters 

strongly affected and improved the predicted LAI. 

5.3.4. Uncertainty of simulated NEE and LAI  

In this section, the uncertainties of NEE and LAI simulated by CLM-EnsP or CLM-EnsPAI are 

discussed and compared. An indicator for this uncertainty is the ensemble spread, which in case 

of NEE was quantified with the standard deviation (STD) and DiffCI90 (Equation 5.4) of the 

annual NEE sum (NEEsum) of the 60 ensemble members. 

The mean diurnal NEE cycles simulated by CLM-EnsP and CLM-EnsPAI for ROgc, MEgc, SEgc 

and WÜgc are shown in Figure 5.3  Figure 5.6. For C3-crop, the mean indicates that with 

estimated parameters, ecosystem respiration (ER) was considerably less overestimated in 
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winter, given that the NEE signal at that time is mainly determined by ER. On the other hand, 

GPP was considerably less underestimated in spring (daytime) compared to CLM-Ref (Figure 

5.4, Figure 5.5), given that relative contribution of GPP to the NEE signal at that time is higher 

than the relative contribution of ER. The spread of CLM-EnsP was very low for all sites, 

indicating that the uncertainty of simulated NEE resulting from parameter uncertainty was 

minor. This is however also related to the fact that parameters were already conditioned to NEE 

data, which reduced the parameter uncertainty. For all C3-grass and C3-crop sites and for all 

seasons, the ensemble spread of CLM-EnsPAI was considerably larger compered to CLM-EnsP. 

The high NEE uncertainty for CLM-EnsPAI is also indicated by DiffCI90 of the annual NEE sum 

(Table 5.6). For CLM-EnsPAI, DiffCI90 spans a wide range from 9.5 gC m-2 y-1 (WÜgc) to 718.0 

gC m-2 y-1 (SEgc). In contrast, for CLM-EnsP, DiffCI90 varied only between 0.5 gC m-2 y-1 (RO) 

and 10.5 gC m-2 y-1 (NZ). The standard deviation of NEEsum was smallest for WÜgc (3.1 gC m-

2 y-1) and highest for SEgc in case of CLM-EnsPAI, and notably lower in case of CLM-EnsP (0.1 

 3.4 gC m-2 y-1). For WÜgc (coniferous forest), DiffCI90 and STD of CLM-EnsPAI were smallest 

and did not differ much from CLM-EnsP. Accordingly, the ensemble spread of the mean diurnal 

NEE cycle for WÜgc (Figure 5.6) did not differ considerably from CLM-EnsP.  

 

Figure 5.3: Mean diurnal course of half-
(c) and autumn 2013 (d) for the Rollesbroich site (RO). Results are shown for the 60 ensemble 
members of the CLM cases EnsP with estimated parameters, and EnsPAI with additional 
perturbed atmospheric forcings and perturbed initial states, in comparison to a reference run 
with default parameters (CLM-Ref) and EC data (EC-Obs.) (Bold lines: ensemble mean). 
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Figure 5.4: Like Figure 5.3, for the Merzenhausen site (ME).  

 

Figure 5.5: Like Figure 5.3, for the Selhausen site (SE).  
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Figure 5.6: Mean diurnal course of half-
(c) and spring 2013 (d) for the Wüstebach site (WÜ). Results are shown for the 60 ensemble 
members of the CLM cases EnsP with estimated parameters, and EnsPAI with additional 
perturbed atmospheric forcings and perturbed initial states, in comparison to a reference run 
with default parameters (CLM-Ref) and EC data (EC-Obs.) (Bold lines: ensemble mean). 

 

In correspondence with NEE, the ensemble spread of LAI was lower for WÜgc than for the other 

sites (Figure 5.7), except f Figure 5.7e), which was covered 24% by 

deciduous forest. For RA, the spread and the magnitude of simulated LAI differed very minor 

between CLM-EnsPAI and CLM-EnsP. Results suggest that for forest, both NEE and LAI 

simulated by CLM4.5BGC are less sensitive to the perturbed atmospheric input data and initial 

conditions than C3-grass and C3-crop.  

Related to the large ensemble spread, CLM-EnsPAI covered well most of the observations except 

in spring, where daytime NEE (GPP) was underestimated for C3-grass and C3-crop (Figure 

5.54, Figure 5.5). The strong underestimation of GPP in spring 2013 for C3-grass and C3-crop 

is related to a delay of the plant onset indicated by the LAI (Figure 5.7 c,d). For ME, the 

beginning of plant onset in spring 2013 was indicated by the rapid increase of the daily LAI 

from zero to >2. For CLM-Ref and for most of the CLM-EnsPAI ensemble members, the onset 

started in May. For those model realizations, the underestimation of the mean daytime GPP in 

spring was highest. In contrast, for CLM-EnsP and a small proportion of CLM-EnsPAI, the plant 

onset already started in March. For those cases, the underestimation of daytime GPP in spring 
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was notably lower. This elucidates the close link of modeled NEE and LAI and highlights that 

errors in the timing of plant onset can lead to substantial errors in simulated NEE.  

Table 5.6: Absolute differences DiffCI90 between the lower and upper 90% confidence interval (CI90up, 
CI90low), and standard deviation (STD) of the annual NEE sum [gC m-2 y-1] for the seven grid 
cells in the Rur catchment where EC towers are located. 

 

Deficits in the stress deciduous phenology scheme of CLM are discussed in Dahlin et al. (2015). 

This phenology scheme is strongly based on various arbitrary thresholds, such as 

freezing degree days to trigger onset). Besides deficits in plant phenology, management 

(harvesting, cutting, etc.) is not explicitly considered for C3-crop and C3-grass in CLM. 

Therefore, observed temporal LAI variations in the growing season are not well represented by 

CLM (Figure 5.7). We assume that the too generalized and simplified model representation of 

C3-crop and C3-grass is a main reason for the high uncertainty of NEE and LAI simulations as 

well as the irregular distribution of the CLM-EnsPAI ensemble members for those PFTs. 

Empirical site studies (Hollinger et al., 2004; Richardson et al., 2010a, 2009) as well as 

modeling studies (Baldocchi and Wilson, 2001; Richardson et al., 2012) show that the growing 

season length can considerably alter annual net productivity (NEP) in boreal and temperate 

forest ecosystems. Here, it was shown that in CLM, the timing of plant onset and offset is 

particularly flawed for C3-grass and C3-crop. Accordingly, the finding that CLM-EnsP 

provided more reliable estimates of the NEE sums for ME and SE than the reference run with 

default parameters (Table 5.4) was mainly related to the fact that parameter estimates shifted 

the plant onset ahead.  
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Figure 5.7: Daily leaf area indices (LAI) for five grid cells in the Rur catchment: ROgc (a), WÜgc (b) MEgc (c), 
SEgc (d) and RAgc (e) for the period December 2011- November 2013. Results are shown for the 
60 ensemble members of the CLM cases EnsP with estimated parameters, and EnsPAI with 
additional perturbed atmospheric forcings and perturbed initial states, in comparison to a 
reference run with default parameters (CLM-Ref) and RapidEye data (Obs.RapidEye) (Bold 
lines: ensemble mean). 

5.4. CONCLUSIONS 

NEE is a key flux and LAI is a key variable of the carbon cycle represented by CLM and similar 

models. Both, LAI and NEE are closely linked via common parameters such as the five 

parameters estimated in this study. Therefore, parameter estimation with NEE data was found 

suitable to improve prognostic CLM predictions of LAI. Predicted LAI with estimated 

parameters were not only improved in terms of the magnitude. In some cases also the timing of 

vegetation onset was more correct. This resulted also in an improved characterization of NEE, 

which was highly underestimated in spring in cases where the plant onset was delayed. This 

highlights the potential of DREAM-CLM parameter estimates to overcome model structural 

deficits in terms of a misrepresentation of plant phenology.  

Constraining CLM parameters with DREAM without talking into account the uncertainty of 

atmospheric forcings and initial states resulted in a very low uncertainty of the predicted NEE 

and LAI. For example, the absolute difference of the upper and lower boundary of the 90% 

confidence interval for the annual NEE sum of the ensemble (DiffCI90) only varied between 0.5 
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and 10.0 gC m-2 y-1. However, for CLM-EnsPAI with additional consideration of uncertainty in 

the initial model conditions and atmospheric input data, DiffCI90 was 62.0  718.0 gC m-2 y-1 for 

C3-grass and C3-crop. Evergreen coniferous forest was least sensitive to the perturbed initial 

states and atmospheric forcings (DiffCI90 = 9.5 gC m-2 y-1). It is concluded that the estimated 

annual NEE-sum is related to a large uncertainty, due to uncertain atmospheric forcings, initial 

conditions and parameters. However, these uncertainties are considerable lower for evergreen 

needleleaf trees (and presumably also for broadleaf deciduous trees) than for C3-grass and C3-

crop. 

Estimated parameters reduced the relative difference between the observed and modeled NEE 

sum significantly for most evaluation sites compared to a reference run with default parameters. 

The sign of the annual NEE sum for the catchment was reversed from positive to negative with 

estimated parameters compared to default parameters. This elucidates the potential and 

relevance of thorough parameter estimation in terms of obtaining more reliable estimates of 

regional carbon balances.  
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Modeling of land surface fluxes (carbon, nitrogen, water and energy) is essential to improve the 

understanding and predictability of feedback mechanisms between climate change, ecosystem 

behavior, hydrological processes and land use. In order to support future decision making in 

climate politics and environmental planning, it is important to implement and enhance land 

surface modeling at the regional level. A central goal of my PHD work was to upscale net 

ecosystem exchange (NEE) from the eddy covariance (EC) footprint scale to the Rur catchment 

domain using the Community Land Model (CLM) and updated ecosystem parameter values, 

which were estimated with help of measured NEE data. Such model-data fusion approaches 

require an accurate estimate of the measurement uncertainty, which is essential as well for a 

thorough evaluation of the model performance. 

Therefore, first the uncertainty of eddy covariance NEE measurements was investigated for one 

grassland site inside the Rur catchment. The classical two-tower approach estimates the 

measurement uncertainty or random error based on the standard deviations of the fluxes 

measured simultaneously at two nearby EC towers. The random error is estimated as function 

of the flux magnitude with help of a linear regression equation, which allows then to estimate 

the random error as function of the measurement value. Because accurate uncertainty estimation 

is usually time consuming, regression functions like the ones published by Richardson et al. 

(2006) are commonly used by other scientists to obtain random error estimates of EC fluxes. 

Various other uncertainty estimation approaches have been developed, but up to now none is 

generally accepted and applied. The two-tower approach assumes statistical independence of 

the measured data (non-overlapping footprints) and at the same time identical environmental 

conditions in the footprint of both EC towers. Because these two requirements are contradictory, 

the definition of an appropriate tower distance is difficult and the applicability of the method 

limited. To solve this issue, an extension of the classical two-tower approach is presented, which 

corrects for systematic differences of the synchronously measured NEE data from two EC 

stations. It was assumed that systematic flux differences mainly arise from different 

environmental conditions in the footprint area of both EC stations and thus increase with the 

EC tower distance. The role of the EC tower distance was investigated by applying and 

evaluating the uncertainty estimation for five different EC tower distances ranging between 8 

m and 34 km. The analysis was made for a dataset that had been filtered for similar weather 

conditions at the two sites, and an unfiltered one. The uncertainty estimates were compared with 

corresponding estimates obtained from an independent reference method presented in Mauder 
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et al. (2013), which is based on the auto- and cross correlations of the raw data measured at a 

single EC station. The proposed extension of the two-tower approach applied to weather-filtered 

data substantially reduced the overestimation of the two-tower based NEE measurement 

uncertainty for all separation distances except for 8 m, by 79% (34 km distance) to 100% (95 

m distance). A major conclusion of this study is that the extension of the two-tower approach 

raised the applicability of the two-tower approach to more site pairs with less ideal conditions, 

i.e. not very similar environmental conditions. The fact that both approaches, the extended two-

tower approach and statistical reference method, provided very similar uncertainty estimates 

enhanced confidence in both methods.  

In the second study, eight key ecological parameters were identified which strongly determine 

the simulated carbon fluxes in CLM. Those parameters were then estimated with the Markov 

Chain Monte Carlo method DREAM (DiffeRential Evolution Adaptive Metropolis) separately 

for four sites with different land cover types: C3-grass, C3-crop, evergreen coniferous forest 

and broadleaf deciduous forest. Those are the most widespread plant functional types (PFTs) in 

the Rur catchment and cover > 90% of the vegetated catchment area. The four sites were located 

inside or close to the Rur catchment. From the eight estimated parameters, five are PFT-specific 

and three are hard-wired in the CLM source code. Hard-wired parameters such as the 

temperature coefficient Q10 do not vary among PFTs in CLM by default. However, various 

studies indicate that for example Q10 is not a constant, but varies e.g. depending on the PFT and 

different environmental conditions (Flanagan and Johnson, 2005; Kätterer et al., 1998; 

Kirschbaum, 2010; Reichstein et al., 2005). Therefore, the eight parameters were estimated 

jointly for each PFT. The parameters were constrained with half-hourly NEE time series 

measured at four EC sites. The NEE time series covered a whole year (including gaps). In 

addition, parameters were estimated separately for the single seasons of this one-year period in 

order to test if accounting for seasonal variations of the CLM parameters would improve the 

simulated NEE. Temporal variations of LSM parameters and its relevance for model-data fusion 

approaches and carbon flux predictions have already been highlighted in previous studies (e.g. 

Williams et al., 2005; Mo et al., 2008), but have not yet been explicitly investigated for CLM. 

In addition, it was investigated how strongly the CLM parameter estimates and initial states are 

linked. This was done by means of an additional experiment where two initial state factors for 

the CLM carbon-nitrogen pools were estimated jointly with the parameters. Parameter estimates 

obtained from DREAM were evaluated using (i) half-hourly NEE observations of an 

independent evaluation period, and (ii) NEE data from four FLUXNET sites situated in about 

600 km distance to the original sites. To comprehensively evaluate the parameter estimates, 
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different evaluation indices were calculated, which express the mismatch of modeled and 

measured NEE data: (i) the relative difference of the annual NEE sum (RD NEE), (ii) the root 

mean square error for the one-year time series of half-hourly NEE data (RMSEm), (iii) the mean 

absolute difference of the mean diurnal NEE cycle (MADdiur), and (iv) the mean absolute 

difference of the monthly mean NEE values over the evaluation year (MADann). Those indices 

were calculated and compared for the CLM runs with updated parameters and a reference run 

with CLM default parameters. It was shown that parameter values underlie a strong seasonal 

variability. Parameters that were estimated on seasonal basis outperformed the parameters that 

were estimated based on the whole one year period. With parameters estimated separately for 

the four seasons, RD NEE was 50% lower than for the reference run, averaged over all sites. The 

respective MADdiur and MADann indices were reduced by a factor of 1.5 (MADdiur) and 1.4 

(MADann) on average. This highlights that estimated parameters notably improved the 

consistency of modeled and measured NEE data as well as the model representation of the 

simulated mean diurnal and annual NEE cycle. The evaluation was more successful for the 

forest PFTs compared to C3-grass and C3-crop. Along with this result, correlations between 

parameters and the initial state factors were found to be higher for C3-grass and C3-crop than 

for the forest PFTs. It was concluded that CLM4.5 parameter estimates for evergreen needleleaf 

forest and broadleaf deciduous forest were best transferable and most reliable.  

In a following study, DREAM-CLM parameter estimates were applied to the whole Rur 

catchment domain and thus used to upscale NEE data from the EC footprint scale to the 

catchment scale. New parameter sets were estimated using the same data and the same 

DREAM-CLM set-up as in the previous study, but this time only considering the five PFT-

specific parameters. The CLM performance with and without updated parameters was evaluated 

based on NEE data of seven EC towers inside the Rur catchment. The difference between the 

observed and simulated NEE sum for the evaluation period (Dec. 2012  Nov. 2013) was 23% 

smaller if DREAM-parameters instead of default parameters were used as input. This indicates 

that parameter estimates can provide a more reliable estimate of the annual NEE balance for the 

catchment than global default parameters. However, as expected, results suggested that 

parameters estimated for a particular crop type could not be transferred to grid cells where very 

different crops types are grown, such as sugar beet instead of winter wheat. This highlights the 

severe limitations of large scale carbon flux estimation with land surface models that only 

distinguish between very broad groups of PFTs. In addition, it was tested if parameter estimates 

improve the prognostically simulated LAI for the catchment. This was evaluated using LAI data 

obtained from remotely sensed RapidEye images. Results showed that the misfit between 
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modeled and observed LAI data was notably reduced if estimated parameters instead of CLM 

default parameters were used, particularly in case of C3-grass and C3-crop. For those PFTs, the 

mean absolute difference between observed and modeled LAI data (MADLAI) was about 52% 

lower with parameter estimates. Modeled LAI with estimated parameters was not only 

improved in terms of magnitude, but in some cases also in terms the beginning of plant onset 

in spring. This was linked to a notably reduced underestimation of GPP in spring and an 

improved NEE estimate for the whole year. To obtain a more comprehensive picture of model 

uncertainty, a second CLM ensemble was set up where perturbed meteorological input data and 

perturbed initial conditions were applied in addition to the estimated ecosystem parameters. The 

considerably lower spread of NEE and LAI for the forest PFTs compared to C3-crop and C3-

grass indicated that the model uncertainty was notably higher for C3-crop and C3-grass. This 

agrees with findings of the previous study and highlights the potential of parameter and 

uncertainty estimation to support the understanding and further development of land surface 

models like CLM.  
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This study revealed how strongly uncertainties of CLM parameters, initial states and model 

structure are linked. It was highlighted that due to the correlation of carbon cycle relevant CLM 

parameters and initial conditions, optimal parameter values are not constant in time, but vary 

seasonally, which was already emphasized in previous studies with other land surface models. 

Thus, carbon flux estimation would benefit from the option to define temporally variable 

ecosystem parameters like Q10 (temperature sensitivity coefficient) or slatop specific leaf area 

at the canopy top [m2 g-1 C]). Estimated values for CLM parameters like Q10 that are not PFT-

specifically defined by default also varied among plant functional types. Thus, the 

representation of carbon fluxes could be further improved if a PFT-specific definition of those 

parameters would be enabled. DREAM parameter estimates were shown to be mutually 

dependent on the initial model states. This implies that estimated values of NEE-relevant key 

parameters are not necessarily optimal in combination with a different set of initial model 

conditions (e.g. another site or a different time period). This is linked to the fact that also initial 

model states are highly uncertain, since they underlay the steady state assumption and do not 

represent the real state of the ecosystem. Parameter estimation with a relaxed steady state 

assumption as discussed by Carvalhais et al. (2008) could therefore be beneficial. In terms of 

DREAM-CLM, this could theoretically be realized by estimating parameters independently for 

an ensemble of perturbed initial states and then summarizing the obtained joint posterior pdfs. 

However, this would be computationally very time consuming. An alternative approach is to 

estimate initial model states jointly with the model parameters as shown in Chapter 4. This way, 

the uncertainty of model initial states and the correlation of model states and parameters are 

accurately taken into account. However, this does not solve the problem that the estimated 

values may not be transferrable to other sites or regions. CLM4.5BGC contains hundreds of 

state variables that need to be spun up and are linked to ensure a closed energy and carbon 

balance. Substituting selected initial model states by the estimated values most likely breaks the 

carbon and energy balance of the model. The balance checks can be commented out in the 

source code, but then a basic strength of the LSM is discarded as well. The approach used here 

to estimate factors that are applied to all carbon or nitrogen pools (instead of estimating the 

absolute value of singe CN pools) is considered advantageous in terms of preserving the carbon 

and nitrogen balances. 

With regard to the close link of CLM parameters and states, it is important to further investigate 

how parameter uncertainty affects the uncertainty of model initial states and vice versa. The 
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uncertainty of the initial model states is also influenced by the atmospheric input data used 

during the model spin-up. Chapter 5 showed how strongly perturbed initial states and perturbed 

atmospheric forcings increased the uncertainty of predicted NEE and LAI in case of C3-crop 

and C3-grass, compared to an ensemble with uncertain parameters only. This needs further 

investigation, for example by comparing results for different lengths of perturbed spin-ups. 

The strong sensitivity of NEE and LAI to the perturbed initial conditions and atmospheric 

forcings for C3-grass and C3-crop is related to deficits in the model structure of CLM. For the 

characterization of LAI and NEE it was found particularly important to improve the 

representation of the beginning and end of the active growing season for grasses and crops, i.e. 

3- 3-

defined in this study, this would involve the implementation of currently missing key processes 

such as senescence (observed at the winter wheat sites in the catchment). Because the growing 

season strongly varies for different crop types, a discretization of different crop types and the 

consideration of management are considered necessary. As shown here, otherwise no robust 

parameter estimates can be obtained via LSM-data fusion. Crop management (e.g. timing of 

sowing and harvesting) is 

eneric crop 

module was used in this study. In the future, new parameterizations for specific crop types 

should be implemented, as it is foreseen the upcoming version(s) of CLM (personal 

communication with Yaquiong Lu from NCAR). 

It this study, NEE was used to constrain CLM via parameter estimation with DREAM(zs). 

However, the GPP component of NEE is closely linked to the latent heat flux (LE) via the 

process of stomatal opening and closing. Both processes are linked to the LAI, which is used to 

upscale photosynthesis from leaf scale to larger scales. Therefore, a multi-objective parameter 

estimation approach would be beneficial to improve and evaluate the overall LSM performance. 

Additional data like LAI, soil moisture content, fPAR (Fraction of Photosynthetically Active 

Radiation) and leaf C:N ratios could be assimilated to further improve the model. In order to 

improve respiration and C:N pool estimates, measurements of litter, soil organic matter and 

turnover times would be beneficial. Because such data is often limited, an extension of 

measurements at highly equipped site are considered very important for model-data fusion and 

model evaluation. Sequential data assimilation with an Ensemble Kalman Filter (EnKF) like 

method could be suited to integrate the multiple data sources and would be computationally less 

costly compared to other model-data fusion methods.  
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Finally, this study highlights the importance of representativeness of the EC data if used to 

upscale land surface fluxes via model-data fusion. Additional NEE data from EC stations 

available inside or close to the Rur catchment would be beneficial to improve DREAM-CLM 

parameter estimates for all PFTs and to adequately evaluate the reliability of the catchment 

scale NEE prediction. Not only the amount of available EC stations within the catchment were 

very limited for the evaluation of the upscaling approach, but also the length of available NEE 

time series for the stations available. The reduction of uncertainties in land surface flux 

estimates at a regional scale would therefore be enhanced with a further expansion of EC 

stations at representative sites. 
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