000826722 001__ 826722
000826722 005__ 20240711101526.0
000826722 0247_ $$2doi$$a10.1016/j.ijhydene.2017.01.004
000826722 0247_ $$2ISSN$$a0360-3199
000826722 0247_ $$2ISSN$$a1879-3487
000826722 0247_ $$2WOS$$aWOS:000410010600054
000826722 037__ $$aFZJ-2017-00940
000826722 082__ $$a660
000826722 1001_ $$00000-0003-0855-3147$$aColpan, C. Ozgur$$b0$$eCorresponding author
000826722 245__ $$aReduction of methanol crossover in a flowing electrolyte-direct methanol fuel cell
000826722 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000826722 3367_ $$2DRIVER$$aarticle
000826722 3367_ $$2DataCite$$aOutput Types/Journal article
000826722 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510059748_4905
000826722 3367_ $$2BibTeX$$aARTICLE
000826722 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826722 3367_ $$00$$2EndNote$$aJournal Article
000826722 520__ $$aThe flowing electrolyte-direct methanol fuel cell (FE-DMFC) is a type of fuel cell in which a flowing liquid electrolyte is used, in addition to two solid membranes, to reduce methanol crossover. In this study, FE-DMFCs having new materials and design were manufactured and studied. In this design, the flow field plates were made of stainless steel 2205 and had a pin type flow structure. PTFE treated carbon felts were used as the backing layers as well as the flowing electrolyte channel. Nafion® 115 or Nafion® 212 was used as the membranes. The polarization curves and methanol crossover current densities under different methanol concentrations and flow rates of sulfuric acid were measured using fully automated DMFC test stations. The performances of the FE-DMFCs were compared with those of the DMFCs having a single or double membrane. This study is, to the authors' knowledge, the first experimental study on measuring the methanol crossover in a FE-DMFC. The results of this study demonstrate that this technology enables a significant reduction of methanol permeation. At different cell current densities, Faradaic efficiencies up to 98% were achieved. It was shown that for a fixed flow rate of sulfuric acid solution (5 ml/min), at 0.1 A/cm2, the Nafion® 115 based FE-DMFC operating at 1 M yields the highest cell voltage (0.38 V). The maximum power density of the FE-DMFC (0.0561 W/cm2) was achieved when the cell operates with 3 M methanol concentration and 10 ml/min sulfuric acid solution at 0.3 A/cm2.
000826722 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000826722 588__ $$aDataset connected to CrossRef
000826722 7001_ $$0P:(DE-HGF)0$$aOuellette, David$$b1
000826722 7001_ $$0P:(DE-Juel1)129851$$aGlüsen, Andreas$$b2
000826722 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b3
000826722 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b4
000826722 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2017.01.004$$gp. S0360319917300241$$n33$$p21530-21545$$tInternational journal of hydrogen energy$$v42$$x0360-3199$$y2017
000826722 8564_ $$uhttps://juser.fz-juelich.de/record/826722/files/1-s2.0-S0360319917300241-main.pdf$$yRestricted
000826722 8564_ $$uhttps://juser.fz-juelich.de/record/826722/files/1-s2.0-S0360319917300241-main.gif?subformat=icon$$xicon$$yRestricted
000826722 8564_ $$uhttps://juser.fz-juelich.de/record/826722/files/1-s2.0-S0360319917300241-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000826722 8564_ $$uhttps://juser.fz-juelich.de/record/826722/files/1-s2.0-S0360319917300241-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000826722 8564_ $$uhttps://juser.fz-juelich.de/record/826722/files/1-s2.0-S0360319917300241-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000826722 8564_ $$uhttps://juser.fz-juelich.de/record/826722/files/1-s2.0-S0360319917300241-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000826722 909CO $$ooai:juser.fz-juelich.de:826722$$pVDB
000826722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129851$$aForschungszentrum Jülich$$b2$$kFZJ
000826722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b3$$kFZJ
000826722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b4$$kFZJ
000826722 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000826722 9141_ $$y2017
000826722 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015
000826722 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826722 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826722 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000826722 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826722 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826722 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826722 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826722 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826722 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826722 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000826722 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000826722 920__ $$lyes
000826722 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000826722 980__ $$ajournal
000826722 980__ $$aVDB
000826722 980__ $$aI:(DE-Juel1)IEK-3-20101013
000826722 980__ $$aUNRESTRICTED
000826722 981__ $$aI:(DE-Juel1)ICE-2-20101013