001     826802
005     20240610120515.0
024 7 _ |a 10.1063/1.4972563
|2 doi
024 7 _ |a 0021-8979
|2 ISSN
024 7 _ |a 0148-6349
|2 ISSN
024 7 _ |a 1089-7550
|2 ISSN
024 7 _ |a WOS:000392839400055
|2 WOS
024 7 _ |a 2128/16857
|2 Handle
037 _ _ |a FZJ-2017-01019
082 _ _ |a 530
100 1 _ |a Hsiao, F.-M.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Probing defect states in polycrystalline GaN grown on Si(111) by sub-bandgap laser-excited scanning tunneling spectroscopy
260 _ _ |a Melville, NY
|c 2017
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1485348617_2206
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We demonstrate the potential of sub-bandgap laser-excited cross-sectional scanning tunneling microscopy and spectroscopy to investigate the presence of defect states in semiconductors. The characterization method is illustrated on GaN layers grown on Si(111) substrates without intentional buffer layers. According to high-resolution transmission electron microscopy and cathodoluminescence spectroscopy, the GaN layers consist of nanoscale wurtzite and zincblende crystallites with varying crystal orientations and hence contain high defect state densities. In order to discriminate between band-to-band excitation and defect state excitations, we use sub-bandgap laser excitation. We probe a clear increase in the tunnel current at positive sample voltages during sub-bandgap laser illumination for the GaN layer with high defect density, but no effect is found for high quality GaN epitaxial layers. This demonstrates the excitation of free charge carriers at defect states. Thus, sub-bandgap laser-excited scanning tunneling spectroscopy is a powerful complimentary characterization tool for defect states.INTRODUCTION
536 _ _ |a 141 - Controlling Electron Charge-Based Phenomena (POF3-141)
|0 G:(DE-HGF)POF3-141
|c POF3-141
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schnedler, M.
|0 P:(DE-Juel1)143949
|b 1
|u fzj
700 1 _ |a Portz, V.
|0 P:(DE-Juel1)145975
|b 2
|u fzj
700 1 _ |a Huang, Y.-C.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Huang, B.-C.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Shih, M.-C.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Chang, C.-W.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Tu, L.-W.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Eisele, H.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 9
700 1 _ |a Ebert, Ph.
|0 P:(DE-Juel1)130627
|b 10
700 1 _ |a Chiu, Y.-P.
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1063/1.4972563
|g Vol. 121, no. 1, p. 015701 -
|0 PERI:(DE-600)1476463-5
|n 1
|p 015701 -
|t Journal of applied physics
|v 121
|y 2017
|x 1089-7550
856 4 _ |u https://juser.fz-juelich.de/record/826802/files/1.4972563.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826802/files/1.4972563.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826802/files/1.4972563.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826802/files/1.4972563.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826802/files/1.4972563.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:826802
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)143949
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145975
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130627
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-141
|2 G:(DE-HGF)POF3-100
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J APPL PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21