000826832 001__ 826832
000826832 005__ 20240610115859.0
000826832 0247_ $$2doi$$a10.1021/acs.analchem.6b03147
000826832 0247_ $$2ISSN$$a0003-2700
000826832 0247_ $$2ISSN$$a0096-4484
000826832 0247_ $$2ISSN$$a1520-6882
000826832 0247_ $$2WOS$$aWOS:000391346600055
000826832 037__ $$aFZJ-2017-01049
000826832 082__ $$a540
000826832 1001_ $$0P:(DE-HGF)0$$aKempe, Daryan$$b0
000826832 245__ $$aSingle-Molecule FRET Measurements in Additive-Enriched Aqueous Solutions
000826832 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2017
000826832 3367_ $$2DRIVER$$aarticle
000826832 3367_ $$2DataCite$$aOutput Types/Journal article
000826832 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1485411144_32142
000826832 3367_ $$2BibTeX$$aARTICLE
000826832 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826832 3367_ $$00$$2EndNote$$aJournal Article
000826832 520__ $$aThe addition of high amounts of chemical denaturants, salts, viscosity enhancers or macro-molecular crowding agents has an impact on the physical properties of buffer solutions. Among others, the (microscopic) viscosity, the refractive index, the dielectric constant, and the ionic strength can be affected. Here, we systematically evaluate the importance of solvent characteristics with respect to single-molecule FRET (smFRET) data. First, we present a confocal based method for the determination of fluorescence quantum yields to facilitate a fast characterization of smFRET-samples at sub-nM-concentrations. As a case study, we analyze smFRET data of structurally rigid, double-stranded DNA-oligonucleotides in aqueous buffer and in buffers with specific amounts of glycerol, guanidine hydrochloride (GdnHCl), and sodium chloride (NaCl) added. We show that the calculation of interdye distances, without taking into account solvent-induced spectral and photophysical changes of the labels, leads to deviations of up to 4 Å from the real interdye distances. Additionally, we demonstrate that electrostatic dye–dye repulsions are negligible for the interdye distance regime considered here (>50 Å). Finally, we use our approach to validate the further compaction of the already unfolded state of phosphoglycerate kinase (PGK) with decreasing denaturant concentrations, a mechanism known as coil–globule transition.
000826832 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000826832 588__ $$aDataset connected to CrossRef
000826832 7001_ $$0P:(DE-Juel1)166090$$aCerminara, Michele$$b1$$ufzj
000826832 7001_ $$0P:(DE-Juel1)144349$$aPoblete, Simón$$b2
000826832 7001_ $$0P:(DE-Juel1)156122$$aSchöne, Antonie$$b3$$ufzj
000826832 7001_ $$0P:(DE-Juel1)140208$$aGabba, Matteo$$b4
000826832 7001_ $$0P:(DE-Juel1)131961$$aFitter, Jörg$$b5$$eCorresponding author
000826832 773__ $$0PERI:(DE-600)1483443-1$$a10.1021/acs.analchem.6b03147$$gVol. 89, no. 1, p. 694 - 702$$n1$$p694 - 702$$tAnalytical chemistry$$v89$$x1520-6882$$y2017
000826832 8564_ $$uhttps://juser.fz-juelich.de/record/826832/files/acs.analchem.6b03147.pdf$$yRestricted
000826832 8564_ $$uhttps://juser.fz-juelich.de/record/826832/files/acs.analchem.6b03147.gif?subformat=icon$$xicon$$yRestricted
000826832 8564_ $$uhttps://juser.fz-juelich.de/record/826832/files/acs.analchem.6b03147.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000826832 8564_ $$uhttps://juser.fz-juelich.de/record/826832/files/acs.analchem.6b03147.jpg?subformat=icon-180$$xicon-180$$yRestricted
000826832 8564_ $$uhttps://juser.fz-juelich.de/record/826832/files/acs.analchem.6b03147.jpg?subformat=icon-640$$xicon-640$$yRestricted
000826832 8564_ $$uhttps://juser.fz-juelich.de/record/826832/files/acs.analchem.6b03147.pdf?subformat=pdfa$$xpdfa$$yRestricted
000826832 909CO $$ooai:juser.fz-juelich.de:826832$$pVDB
000826832 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131961$$aForschungszentrum Jülich$$b5$$kFZJ
000826832 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156122$$aForschungszentrum Jülich$$b3$$kFZJ
000826832 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131961$$aForschungszentrum Jülich$$b5$$kFZJ
000826832 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000826832 9141_ $$y2017
000826832 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000826832 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826832 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826832 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000826832 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANAL CHEM : 2015
000826832 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826832 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826832 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826832 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826832 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826832 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826832 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000826832 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826832 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bANAL CHEM : 2015
000826832 920__ $$lyes
000826832 9201_ $$0I:(DE-Juel1)ICS-5-20110106$$kICS-5$$lMolekulare Biophysik$$x0
000826832 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x1
000826832 980__ $$ajournal
000826832 980__ $$aVDB
000826832 980__ $$aI:(DE-Juel1)ICS-5-20110106
000826832 980__ $$aI:(DE-Juel1)ICS-2-20110106
000826832 980__ $$aUNRESTRICTED
000826832 981__ $$aI:(DE-Juel1)IBI-6-20200312
000826832 981__ $$aI:(DE-Juel1)ER-C-3-20170113
000826832 981__ $$aI:(DE-Juel1)IBI-5-20200312
000826832 981__ $$aI:(DE-Juel1)IAS-2-20090406