001     826837
005     20240711092258.0
024 7 _ |a 10.1016/j.surfcoat.2017.01.081
|2 doi
024 7 _ |a 0257-8972
|2 ISSN
024 7 _ |a 1879-3347
|2 ISSN
024 7 _ |a WOS:000398873100024
|2 WOS
037 _ _ |a FZJ-2017-01053
082 _ _ |a 620
100 1 _ |a Hejrani, E.
|0 P:(DE-Juel1)145343
|b 0
|e Corresponding author
245 _ _ |a Isothermal and cyclic oxidation behavior of free standing MCrAlY coatings manufactured by high-velocity atmospheric plasma spraying
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1489248965_15218
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In the present paper the high temperature oxidation behavior of a free standing NiCoCrAlY coating produced by high-velocity atmospheric plasma spraying (HV-APS) is investigated and compared with that produced by conventional low pressure plasma spraying (LPPS). Isothermal thermogravimetric experiments at 1000 and 1100 °C in synthetic air revealed a lower oxidation rate of the HV-APS than the LPPS coating. Both coatings formed oxide scales based on alpha alumina, however, in the LPPS coating incorporation of coarse mixed Y/Al-oxide pegs into the scale occurred, increasing the oxidation rate by providing short circuit paths for oxygen diffusion probably due to higher diffusivities in the mixed oxide and/or along the interfaces between mixed oxide and alumina. In the HV-APS coatings most of the yttrium was tied-up in sub-μm Y-containing oxide particles and only minor amounts of mixed Y/Al oxide precipitates were found in the alumina surface scale. Cyclic air oxidation tests at 1100 °C revealed a lower oxidation rate and better scale adherence for the HV-APS coating.The results thus show that HV-APS is a promising method for the processing of MCrAlY coatings. The specific yttrium distribution in form of fine oxide precipitates in the HV-APS material prevents the formation of deleterious Y-rich oxide pegs and promotes formation of a slowly growing, protective alumina scale with excellent adherence.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Sebold, D.
|0 P:(DE-Juel1)129662
|b 1
700 1 _ |a Nowak, W. J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mauer, G.
|0 P:(DE-Juel1)129633
|b 3
700 1 _ |a Naumenko, D.
|0 P:(DE-Juel1)129766
|b 4
700 1 _ |a Vassen, Robert
|0 P:(DE-Juel1)129670
|b 5
|u fzj
700 1 _ |a Quadakkers, W. J.
|0 P:(DE-Juel1)129782
|b 6
773 _ _ |a 10.1016/j.surfcoat.2017.01.081
|g p. S0257897217300919
|0 PERI:(DE-600)1502240-7
|p 191-201
|t Surface and coatings technology
|v 313
|y 2017
|x 0257-8972
856 4 _ |u https://juser.fz-juelich.de/record/826837/files/1-s2.0-S0257897217300919-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826837/files/1-s2.0-S0257897217300919-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826837/files/1-s2.0-S0257897217300919-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826837/files/1-s2.0-S0257897217300919-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826837/files/1-s2.0-S0257897217300919-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826837/files/1-s2.0-S0257897217300919-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:826837
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145343
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129633
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129766
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129670
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129782
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SURF COAT TECH : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21