001     826854
005     20241127124646.0
024 7 _ |a 10.1016/j.apenergy.2017.04.055
|2 doi
024 7 _ |a 0306-2619
|2 ISSN
024 7 _ |a 1872-9118
|2 ISSN
024 7 _ |a WOS:000402343500008
|2 WOS
037 _ _ |a FZJ-2017-01070
082 _ _ |a 620
100 1 _ |a Pasel, Joachim
|0 P:(DE-Juel1)129898
|b 0
|e Corresponding author
245 _ _ |a Advances in autothermal reformer development
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515078613_1050
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Together with the high-temperature polymer electrolyte fuel cell, the reactor for the autothermal reforming (ATR) of liquid hydrocarbons, such as diesel fuel or kerosene, is the key component of the Jülich fuel cell system in the 5 kWe power class. This paper presents some of Jülich’s most recent development in the field of ATR reactors, specifically the ATR 12. ATR 12 is characterized by a new concept for the internal generation of superheated steam as one of the ATR reactants using concentric shells instead of coiled tubing and particularly by the integration of an electric heating wire to enable fast and autonomous start-up. Three different experimental procedures for heating up the ATR 12 are presented and discussed, the most suitable of which enables the start-up of the ATR 12 within approximately 15 min. As a consequence, from the system perspective, the bulky start-up burner, which is also difficult to control, along with the corresponding heat exchanger unit, can be dispensed with. Additionally, comprehensive steady-state experiments identify suitable reaction conditions for the operation of the ATR 12.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Samsun, Remzi Can
|0 P:(DE-Juel1)207065
|b 1
700 1 _ |a Tschauder, Andreas
|0 P:(DE-Juel1)129935
|b 2
700 1 _ |a Peters, Ralf
|0 P:(DE-Juel1)129902
|b 3
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 4
773 _ _ |a 10.1016/j.apenergy.2017.04.055
|g Vol. 198, p. 88 - 98
|0 PERI:(DE-600)2000772-3
|p 88 - 98
|t Applied energy
|v 198
|y 2017
|x 0306-2619
856 4 _ |u https://juser.fz-juelich.de/record/826854/files/1-s2.0-S0306261917304518-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826854/files/1-s2.0-S0306261917304518-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826854/files/1-s2.0-S0306261917304518-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826854/files/1-s2.0-S0306261917304518-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826854/files/1-s2.0-S0306261917304518-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826854/files/1-s2.0-S0306261917304518-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:826854
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129898
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)207065
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129935
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129902
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b APPL ENERG : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21